
ABSTRACT

 The spatial organization of cortical neural activities is 
one of the most important element linking neural 
network models and natural neural networks. The 
columnar organization indicated by several works[1] 
suggest a strong spatial constraint on neural network 
functions. Recently, attention has grown on the 
correlation between a vigorous firing of a particular 
neuron and the "supporting" neural firings in the cortical 
vicinity. Here, we investigate the relation between a 
vigorous firing of a particular neuron and the 
surrounding neural activities using a generic neural 
network architecture. We analyze the the spatial firing 
pattern in the vicinity of a particular neuron when the 
neuron is firing vigorously (preferred cortical state, 
PCS). We find that the spatial heterogeneity of the PCS 
is more pronounced in the both extreme ends of activity 
scale, and not so much in the intermediate activity 
region. This result, taken together with an analysis of 
the reaction of the network to a dynamic stimulus, put a 
strong constraint on the computational capabilities of a 
neural network. We discuss the implications of our 
result for the spatial constraints imposed on the neural 
information processing.

1. INTRODUCTION

A typical cortical neuron is connected via 10^4 synapses 
to as many neurons. Heterogeneity arises from the 
spatial distribution of the synapses, and the different 
types of neurotransmitters involved. This dense and 
heterogeneous connection is the physical foundation for 
the remarkable computational capability of the brain. 
 The dense synaptic connectivity puts certain constraints 
on the capability of the cortical neurons. One of the 
constraints is that the cortical neurons cannot fire 
independently of each other. While the elements in a 
Turing machine[2] can in principle take arbitrary values 
independently of other elements, the activities of cortical 
neurons is highly constrained by the synaptic 
connectivity. When the synaptic connectivity is given in 
terms of the physical distance in the cortical surface (as 
is often the case), it is implied that the state of the 
neurons which are close to each other cannot take 
arbitrary values. The coherence in the cortical neural 
activities are revealed by local field potentials and single 
unit recordings [3],[4].
 A recent study [5] investigated the relation between 
single unit activity and real-time optical imaging in 
areas 17 and 18 of the visual cortex of the anesthetized 
cats. The orientation selective cells investigated fired 
vigorously when the surrounding neurons fired in a 
pattern (preferred cortical state, PCS) similar to that 
observed in the evoked state, when the single unit was 
stimulated with drifting grating of optimal orientation. 

The fact that a neuron is likely to fire in the PCS even 
when spontaneously firing puts a potentially very strong 
constraint on the computational capabilities of the 
cortical neurons. 

2. MODEL

We investigated the mutual dependence of the cortical 
neurons. We constructed a generic neural network (Fig.1)
where the excitatory and inhibitory synaptic connections
are given with the following rules. The excitatory
synapses are distributed with a Gaussian distribution in
the range of 0 < d < 4 , where is d is the distance
from the presynaptic neuron and  is the standard
deviation of the Gaussian. The inhibitory synapses are 
distributed uniformly within the range of  0 < d < 2 .
The excitatory neurons project to both excitatory and
inhibitory neurons. The inhibitory neurons project only
to excitatory neurons. The ratio of the excitatory and
inhibitory neurons is set to be 10:3.
   

ex ex ex

inh inh

             (a)                                (b)

Fig. 1: The Architecture  of the Network. A single layer 
network is represented as a composite of excitatory and 
inhibitory neuron layers. The synaptic connections are 
distributed with a gaussian distribution for the excitatory 
neurons, The inhibitory synapses are distributed in a 
smaller range. There are additional long range excitatory 
connections between the alternating columns. 

 The dynamics of the network is given by
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where wij  is the synaptic weight, ui,ex  and ui,inh , x i,ex

and x i,inh  are the membrane potentials and mean firing 
frequencies  for the excitatory and inhibitory neurons 
respectively. N i,ex −ex , N i,ex −inh , N i,inh − ex are the 

numbers of synaptic connections, N ex−ex , N ex−inh , 

N inh− ex  are mean numbers of synaptic connections. 
Note that the The membrane potentials are linear sums 
of the input coupled with the synaptic weight, except for 
the term which normalizes for the synaptic number 
variation. This normalization term rectifies the 
quantitative heterogeneity introduced by the number of 
synaptic connections, leaving only the spatial 
heterogeneity. 
 To introduce a generic heterogeneity, the network is 
subdivided into two kinds of columns, where the 
columns are distributed in an alternating checkerboard 
pattern. There are 126 x 126 neurons in the excitatory 
layer, which are divided into columns of 21 x 21 
dimension.
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Fig.2 Generic spatial heterogeneity in the network. Here, 
a generic spatial heterogeneity is introduced into the 
network by dividing the cortical surface into two kinds 
of alternating columns. Long range excitatory 
connections are formed between the neurons in 
neighboring columns of the same kind. The two kinds 
of columns are marked as R and L for convenience.

 The sigmoid function for excitatory and inhibitory 
neurons are given different slopes (Fig.3)

Fig.3  The Sigmoid Function for the excitatory and 
inhibitory neurons.

 In the simulations, we have assumed the periodic 
boundary condition. Although the actual cortical state is 
naturally does not obey the periodic boundary condition, 
this arrangement avoids the border effect and is expected 
to represent a homogeneous cortical condition. 

3. RESULTS

 When a random initial activity pattern was given, the 
network soon went into a steady state, which was 
characterized by quasi-periodic fluctuation. An arbitrarily 
chosen excitatory neuron was monitored. Although the 
PCS is originally defined only for the vigorous firing 
state[5], we generalized the concept here to preferred 
states for arbitrary levels of activity. This generalization 
can be justified on the ground that it is possible to ask 
what kind of cortical state is preferred for any level of 
neural activity, although a particular functional 
significance might not be assigned to the intermediate 
activation level.

We monitored the activity of a single arbitrary neuron 
and analyzed its PCS. Figure 4 shows the typical time 
course of the neural activity. Here, the neuron was taken 
to be the one at (52, 52).

Fig.4 A typical time course of neural activity.

 Fig.5 shows the spatial distribution of the neural 
activities (preferred cortical state, PCS) when the neuron 
at (52, 52) was firing vigorously (x>0.75) or silently 
(x<0.25), or intermediately (0.5<x<0.75 or 
0.25<x<0.5). The activities are shown only for the 
excitatory neurons in a color scale between 0-1 As is 
demonstrated in figures 5(a) and 5(d), There is a clear 
spatial heterogeneity of the PCS in the case of vigorous 
firing (x>0.75) and low firing (x<0.25). This 
heterogeneity clearly reflects the generic synaptic 
heterogeneity introduced as in Fig.2. On the other hand, 
there is no clear indication of a spatial heterogeneity 
when the neural activity is in the intermediate range (Fig 
5(b) and Fig.5(c)).

In the second set of simulations, we gave the network 
an external input, specifically to stimulate a particular 
neuron. Fig.6 shows the spatial distribution of neural 
activity when the neuron (52, 52) was stimulated. The 
average is taken for the time when the neuron exhibited 
an activity of >0.75. There is a recruitment of the 
neighboring columns of the same kind, as is seen in the 
spontaneous activity of Fig.5(a), although the activity is 
less pronounced. There is in addition an over-all 



inhibition of the surrounding area. Thus, the PCS is 
induced by an external stimulation, with a possibly 
higher activity contrast. This result is consistent with 
the finding of [5].

Fig.6 The preferred cortical state in the case of external 
stimulation. The neuron at (52, 52) was evoked to high 
level of activity by external stimulus. The preferred 
cortical state (x>0.75) shows a much pronounced 
surround inhibition.

 The strong spatial constraint as expressed in the PCS 
has some implications for the computational capability 
of the network. Specifically, it is interesting to ask how 
the network is able to respond to a dynamically 
changing stimulus, when the sequence of inputs might 
lead to a incompatible PCS. If the input was given as 
I(x,y,t) , where (x,y) are spatial coordinates and t is 
the time, there is in general a compatibility problem 
between I(x,y,t) and I(x,y,t + ∆t). Inconsistencies 
between the PCS for these successive inputs might lead 
to the inability of the network to dynamically adapt to 
the input.
 In order to investigate the dynamical property of the 
network, we gave the network a moving a stimulus. 
Specifically, a focused moving stimulus was given 

sequentially to one of the alternating columns. In order 
to estimate the ability of the system to adapt 
dynamically to the moving stimulus, the measure 
xR − xL (the difference in between the neural activities 
in the R type and L type columns, averaged over the 
neighboring columns) were calculated. This particular 
measure can be interpreted, for example, as one 
describing the competition between two eyes in 
binocular rivalry [6], [9-11].
 Fig.7 shows the histogram of the duration time tR> L , 
which is defined as the length of the period when 
xR − xL is positive. T1 represents the condition where 
the input is given to a particular column for 1 time unit, 
before moving on to the next column of the same kind. 
In the T7 condition, the same stimulus is repeated for 7 
time units for the same column before moving on to the 
next column. Namely, the stimulus moves 7 times faster 
in the T1 condition. The stimulus is moved in a 
specified band (the y coordinate is constant) and the data 
is taken for the neurons located at 2 columns apart from 
the movement track.
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Fig.7 Probability distribution of the duration time of 
dominance. 
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 Fig.5 The preferred cortical states for different level of activation for (a) 0.75<x, (b) 0.5<x<0.75, (c) 0.25<x<0.5, (d) 
x<0.25. The activity was measured for the neuron at (52, 52).
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Fig.8. Shift of the duration time 

 Fig.8 represents the shift of the duration time in the 
moving stimulus conditions compared with the 
spontaneous firing state. As seen in Fig.7, the 
spontaneous fluctuation of the network leads to a 
dominance duration time distribution which peaks at 3-4 
seconds. When the moving stimulus is given, the peak 
is shifted towards the duration time specific to the 
moving stimulus. In the T1 condition, the evoked 
duration time is around 1 units, whereas in the T7 
condition it is around 7 units. We can estimate the 
ability of the system to adapt to these conditions by the 
shift of the duration time.
 As can be seen from Figs.7 and 8, the duration time 
peak does not shift completely to the one specified by 
the external input. The system adapts to the moving 
stimulus within the constraint specified by the inherent 
fluctuation of neural activities. 

4. DISCUSSIONS

 The selectivity of neural response to external stimuli 
has been employed in the analysis of biological and 
artificial neural networks [7-8]. Selectivity in this sense 
is a mapping between a certain feature of the stimuli 
(such as the orientation of the bar, movement in a 
certain direction, a particular wavelength, etc.) and a 
subset of the (in general) spatio-temporal neural activity 
pattern. The concept of stimulus selectivity is certainly 
helpful in understanding the brain, which is at its outset 
a pattern matching machine.
 However, even if we take the view that stimulus 
selectivity is important in the analysis of the brain and 
the construction of the artificial neural network, it is the 
internal connection between the neurons in the network 
which makes the selectivity possible. It is therefore 
necessary to "internalize" the stimulus selectivity, by 
spelling out the necessary condition for a particular 
neuron to fire in terms of the properties of the internal 
state.
 The PCS is in this sense an internalization of the 
stimulus selectivity. In [5], it was observed that the 
PCS in evoked state is the same as the PCS in the 
spontaneously firing state. This result suggests that the 

neural network does not go into the selectively firing 
state de nuvo. The selectively firing state supported by 
the PCS is just one of the possible transient states in the 
spontaneous firing state. The appropriate stimulus input 
just increases the probability for the network to stay in 
the PCS, which in turn induces the activity of the 
neuron with that selectivity.
 When a particular stimulus induces a neuron to fire, it 
does so by inducing the neural network to go into the 
PCS. In other words, an external stimulus is able to 
evoke the firing of a particular neuron only when it 
successfully recruits the PCS, which is already present 
in the spontaneous firing state. Since the PCS is the 
result of the particular spatial pattern of the synaptic 
connection in the network, the spatial constraint as 
expressed in the PCS plays an important role in such a 
computation.
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Fig.9 The dynamical adaptability of the visual system in 
binocular rivalry. The salient features (moving circles) 
are always present in the visual percept, even if that 
means the highly complicated modulation of the ocular 
dominance pattern. Adapted from [11].

 The neural network somehow has to adapt to the 
changing stimulus environment within such a spatial 
constraint. In binocular rivalry [6]. [9-11], the visual 
system is able to adapt to the dynamical change in the 
environment, so that, for example, the salient features 
are always present in the conscious percept, even if that 
means that the ocular dominance pattern should be very 
flexibly modulated (Fig.9). In order to realize such a 
dynamical adaptability, the neural network has somehow 
to overcome the inconsistency in the PCS for the 
neurons selective for the successive stimulus inputs. In 
biological system from cell motility[12] to the nervous 
system[13], spontaneous fluctuation is known to 
correlate with the ability of the system to adapt 
dynamically to the changing environment. Our 



simulation results suggest that the adaptability of the 
system might correlate with the inherent fluctuation in 
the spontaneous state, which induces the system to go 
through transitions between possibly multiple PCSs.
 One of the mysteries of the property of neural firing in 
the brain is the functional significance of the 
spontaneous activity and the variability of neural 
activity in the evoked state[14]. In a conventional digital 
computer, the level of variability observed in cortical 
neural activities would not be permissive, as it would 
lead to frequent computational errors. Apart from a role 
in the stochastic resonance [14], spontaneous variability 
of neural act ivies has not been considered in the context 
of positive functionality. Our result suggests that 
spontaneous fluctuation of neural firing might contribute 
to the functionality of the system by providing the 
conditions necessary for the system to dynamically 
adapt to the environment.

5. CONCLUSIONS

 In this paper, we investigated the properties of the 
preferred cortical state (PCS) in the spontaneously firing 
state by building a generic neural network model. We 
introduced a generic spatial heterogeneity by assuming 
two types of columns to be distributed in a checkerboard 
pattern. The PCS for the vigorously firing state as well 
as the silent state was found to be highly heterogeneous, 
consistent with the synaptic heterogeneity introduced in 
the system. On the other hand, the PCS for the 
intermediately firing state is less heterogeneous in space. 
This property of PCS sets a spatial constraint on the 
computational ability of the network, e.g., in terms of 
the consistency relations between the PCS for different 
neurons with different stimulus selectivity.
 When the activity of a particular neuron was evoked by 
external stimulus, the PCS in this condition resembled 
that in the spontaneous firing state. This result is 
consistent with the hypothesis that in an evoked state, 
the neural network does not build the response de nuvo  
but picks up one of the PCS already present in the 
spontaneous state.
 The ability of the neural network to adapt dynamically 
to the changing environment is expected to be highly 
constrained by the multiple PCSs and the mutual 
consistency relationship between them. When our 
generic neural network was provided with a moving 
stimulus, it was found that the dynamical ability of the 
network correlates with the inherent fluctuation of neural 
firing in the system. It is possible that the neural 
network adapts to the changing environment by 
modulating its inherent fluctuation. If this conjecture is 
the case, a neural network would not be able to adapt to 
a change in the environment without a certain level of 
spontaneous variability of the activity of the its neurons. 
This argument might provide raison d'être for the 
existence of the observed variability of neural firing in 
the central nervous system.
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