
IEICE TRANS. INF. & SYST., VOL. ??? JULY 2000, NO. ??? ??? 2000 1PAPER Special Issue on Machine Vision ApplicationsRandomized Adaptive Algorithms for Mosaicing Systems�Frank NIELSENy, NonmemberSUMMARY Given a set of still images taken from a hand-held camera, we present a fast method for mosaicing them intoa single blended picture. We design time- and memory- e�cientstill image mosaicing algorithms based on geometric point fea-ture matchings that can handle both arbitrary rotations and largezoom factors. We discuss extensions of the methodology to re-lated problems like the recovering of the epipolar geometry for3d reconstruction and object recognition tasks.key words: image processing, registration, warping , mosaicing,point pattern matching, bucketting1. IntroductionMosaicing (also called image stitching) consists of tak-ing a sequence of still image pictures and providing acollection of transformations to join/merge them intoone blended picture (see Figure 1 and 9). Many soft-ware companies already propose stitchers for creat-ing panoramas and browsers for navigating throughthem via environment maps (image-based renderingsystems). Basically, those programs proceed as follows:(1) �nd or ask for camera parameters, (2) warp imagesaccording to these parameters (lines bend to quadraticcurves) and (3) stitch images by means of a 1d- or 2d-translation and eventually small tilting, and (4) adjustand blend color intensities. Panoramic images do notpreserve lines. We refer the reader to the course note [2]for an up-to-date survey on image registration and im-age warping techniques.In this paper, we consider perspective mosaicingwhere straightness of lines is preserved. Our method isautomatic and does not assume any user input nor anya priori knowledge of the camera parameters. Imagescan also be taken by several pinhole cameras havingdi�erent intrinsic/extrinsic parameters. In the case ofimages taken by an ideal pinhole-model camera from (a)the same three-dimensional viewpoint or (b) a planarsurface taken from two di�erent viewpoints, the trans-formations related these images are known to be homo-graphies (also called collineations [3]), linear transfor-mations de�ned up to a scalar factor, in the projectiveplane P2. A key di�erence from panoramic mosaicingManuscript received 1st October 1999Manuscript revised 11th January 2000ySony Computer Science Laboratories Inc, FRL�This paper was presented at MVA'98, Pages 11-14,ISBN 4-901122-98-3 (also available as technical reportSCSL-TR-98-035 | see [1])

is that we can interpret the composite stitching as theimage that would have been taken by a bigger sensingdevice (e.g., CCD).There are two widely used techniques that havebeen used so far in the past for mosaicing: the �rst oneconsists of image registration where the collineation isoften restricted to similitudes on the plane (id. trans-lation, rotation and scaling). Local image registra-tion is usually either performed by gradient descent orLevenberg-Marquadt optimization procedure. Globalimage registration is reached (sometimes) by hierar-chical matching using pyramidal image representation.The second method is based on Fourier principles and iscalled the phase correlation method. This technique es-timates a global 2d translation by computing the phasedi�erences of the respective image frequency signals butloses the perspective information as it goes to the fre-quency domain. Moreover for large rotations or di�er-ent zoom scales, this method fails. Szeliski and Shumpresented an elegant and robust method for creatingfull mosaics and texturing them onto a polyhedron [4],given rough image matchings.Our proposed fully automatic method handleslarge zoom (�= �3) and arbitrary rotation values whilekeeping the running time attractive for responsive ap-plications. Its current limitations, as discussed in sec-tion 6, are mostly due to the detection of reliable fea-tures (sometimes called \repeatable" or \stable" fea-tures) in images having large di�erent scalings ratherthan the matching process in itself. Indeed, our methodis based on planar point set pattern matching havinga given precision tolerance. As the zoom range grows,say linearly, the tolerance window needs more than lin-ear growth because of the detected feature imprecisions.Our method is based on Monte-Carlo/Las Vegas algo-rithms that combine both randomization and geometricfeature selection.Mosaicing is a core technology used in compositescanning, image-based rendering (e.g., new view gener-ation without having �ne 3d model description), high-de�nition pictures, image compression, image stabiliza-tion, etc. Still image mosaicing techniques largely di�erfrom video mosaicing techniques [5] because no videostream (optical ow) is given for tracking locally pointsof interest in a prescribed window. In this paper, weconcentrate our e�ort on �nding those global feature



2 IEICE TRANS. INF. & SYST., VOL. ??? JULY 2000, NO. ??? ??? 2000correspondences e�ciently.2. Feature-based mosaicingLet I1 and I2 be two pictures taken from the sameoptical center. We �rst start by detecting geomet-ric feature (points, edges, triple junctions, etc.) setsS1 = fL1; :::; Ln1g (n1 = jS1j) and S2 = fR1; :::; Rn2g(n2 = jS2j). For example, points are extracted bya Harris-Stephens corner detector or even more reli-ably (at the expense of a small increase of the runningtime) by a Kanade-Lucas-Tomasi's intensity gradientapproach. A collineation or homography is de�ned bythe pairing Li $ Ri of 4 points fLigi of S1 with 4 otherpoints fRigi of S2 in general position. Let H be sucha transformation. Let Li and Qi be the pixel points inimage I1 and I2 that are the respective perspective pro-jection of the same physical three-dimensional pointsMi. Using the homogeneous 2d coordinates for Li andRi, we get:Ri = 0@ x0iy0iz0i 1A = HLi = 0@ h11 h12 h13h21 h22 h23h31 h32 h33 1A0@ xiyizi 1Awith Li = (xizi yizi ) and Ri = (x0iz0i y0iz0i ). Let P =(LT1 LT2 LT3 LT4 ) and Q = (RT1 RT2 RT3 RT4 ) be 3x4 matri-ces. Then, we get H = QPT (PPT )�1:

Fig. 1 Mosaicing of 4 images (Stanford University).Considering only homographies de�ned by feature

correspondences, we have as many as 4!�n14 ��n24 � pos-sible transformations (Example: for n1 = n2 = 40 wehave more than 200 billion induced homographies. Incomparison, we have only about 1.2 millions panoramictransformations). The naive algorithm which consistsin scoring one-by-one each homography and reportingone which has the best score is therefore not scaleable(O(n8) homographies, where n = maxfn1; n2g).
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Fig. 2 Registration process synopsis: Geometric �ltering se-lects potential feature candidates (feature space) that generateplausible transformations, i.e. reasonable zoom values, not toolarge rotations, etc. (transformation space)If we consider anchored corners (a corner pointand two half-line segments emanating from it) as fea-tures [6], the homography can be found by pairing onlytwo anchored corners. Although the running time in-creases for detecting these elaborated templated fea-tures by non-linear minimization techniques, the corebottleneck is still the O(n4) combinatorics of the all-pairing approach. In this paper, we present an e�cientscheme to select only a few (homographies) of themthat are plausible to give birth to potential solutions.The outline of the proposed algorithm is as follows(see also Figure 2):� Extract features from images (e.g. corners).� Give a set T of homographies satisfying geometricconstraints and matching at least a given fractionof the point sets.� Score each homography of T and choose one withhighest quality (eg., score).Once this global matching has been found, we re-�ne the image quality by the following process:



NIELSEN: ALGORITHMS FOR MOSAICING SYSTEMS 3� Perform local optimization (subpixel analysis) onfeatures. This step is required because we deal withpixels and not points! We can use also a gradientdescent or Levenberg-Marquadt method on pixelintensities.� Perform local optimization by perturbating coe�-cients of the homography matrix (compensate forlens aberration).� Warp images (deghosting techniques and pixel am-pli�cation).� Correct intensity and blend images.3. Scoring transformationsOnce a transformationH has been chosen as a potentialcandidate (H is induced by 4 correspondence pairs), wehave to evaluate its score. We initially attach to eachdetected feature a vector of characteristics describingthe neighborhood where the feature has been extracted(e.g., intensity values, qualitative measures). We saythat a point L1 in S1 matches a point R1 in S2 fora collineation H if d2(R1;HL1) <= � (for some pre-scribed � >= 0) and if their corresponding qualitativefeatures correlate satisfactorily. We call this match an�-match. Let HS1 be the set of points fHLjL 2 S1g.The common feature points are called inliers and fea-tures present in only one of the two images are calledoutliers.We distinguish between four families of scoringsthat exhibit trade-o�s between running time and relia-bility of their scores:(1) Pixel Cross-Corellation. We use as a scoringfunction for H the zero mean cross-correlationon subwindows centered at extracted points.On RGB pictures, a pixel p with color triple(pR; pG; pB) has intensity I(p) = 0:3pR+0:59pG+0:11pB. The quality is de�ned as follows:Q(H) = Pp2W(I(Hp)� I(p))2qPp2W I(Hp)qPp2W I(p) ;where W is the correlation window.(2) The Haussdorf matching. Each point R 2 S2 isassociated to its closest neighbor ofHS1 providedthat its distance is less than a prescribed � (seeFigure 3). Eventually several points of S2 maybe attached to the same point of HS1 (especiallywhen zoom factors di�er). Each associated pairof points de�nes an edge of the graph whose nodesare the vertex set HS1 [ S2 (See Figure 3, top).The score of a Haussdorf matching is set to be theweigthed number of edges of any pair of matchedpoints. (See also the directed partial Haussdorf

distance that takes into account inliers/outliers.)This measure, however, is not suitable for di�er-ent image scalings.(3) The bottleneck matching. The bottleneckmeasure [7], [8] reects in a better way the 1$ 1matching of point sets. We consider the completebipartite graph G = (HS1;S2; E), where E is theset of all weighted edges e = (L;R) where w(e) =d2(L;R). Let G� be the restricted bipartite graphof G containing all edges of weights less than �:G� = (HS1;S2; E�), st. E� = f(HLi; Rj)jLi 2S1; Rj 2 S2; d2(HLi; Rj) <= �g. The bottleneckmatching is a maximum matchingy, often not per-fect matching, of G� (see Figure 3, bottom).

Fig. 3 Haussdorf matching (top). Bottlebeck matching(down).(4) Discrete approximate matching.Since our point sets are dense and of bounded di-ameter (namely the image diameter), we can usebucketting techniques. For each point L 2 HS1we check whether there is a point R 2 S2 in itsneighborhood (see Figure 4).We report the number of matching points ap-proximately. (Buckets introduce an inherent p2-approximation factor). Note that the motif of theboolean bucket can be computed beforehand anddoes not depend on H but on S2.Running times.(1) can be computed in time proportional to the numberof pixel correlations (window sizes, also proportionalyA matching is a set of pairwise disjoint edges.
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Fig. 4 Boolean bucket on set S2: grey buckets are marked tocontain a point of S2 in their neighborhood.to the number of features). (2) can be computed e�-ciently in O(n logn)-time using Voronoi diagrams but isnot appropriate for di�erent scalings. (We may use thehardware graphics pipeline as suggested in [9] to accel-erate this computation.) (3) requires more processingtime; Efrat and Itai [8] using an implicit form of thegeometric graph reported nearly O(n 32 )-time algorithmfor computing a longuest matching that minimizes themaximum edge length among all matched edges. Moreprecisely, let m = jE�j be the number of edges of G�and n = n1 + n2 be the number of vertices. Per-fect/maximum matchings in general weighted graph,where one wants to minimize the sum of matched edges,require O(n3) time [10] using the so-called Hungarianmethod. On the other hand, on unweighted bipartitegraphs, a maximum matching can be found whenever itexists in time O(mpn) [11]. When considering geomet-ric graphs, i.e., graphs obtained from a geometric scene,Vaidya [12] gave an O(n 52 )-time algorithm for matchingtwo points sets so that the sum of the matched edgesis minimized. Considering the L1 distance instead ofthe L2 distance, Vaidya obtained an O(n2 log3 n)-timealgorithm. Later on, those results where improved byAgarwal et al. [13] to O(n2+) for any arbitrary smallpositive  > 0. Very recently, Efrat and Itai [14] usingan implicit form of the geometric graph reported nearlyO(n 32 )-time algorithm for computing a longuest match-ing that minimizes the maximum edge length among allmatched edges. Further re�nements of their algorithmhas been achieved by using dynamic data-structures forfat objects [15]. (See also the work of He�ernan andSchirra [16] for approximation schemes.)(4) is evaluated in linear time but only gives anapproximation of the size of the common point set.Another classic approach to point set patternmatching, �rst developed by Huttenlocher et al. [17], isto perform a branch-and-bound strategy on some searchspace; For example, the coe�cients of the matrix codinga planar transformation, de�ne a 4-dimensional space(rotation, translation and uniform zoom). The algo-

rithms start with a given 4d box containing an optimalsolution, splits the current box into sub-boxes, kill someof them (those where the current best solution is betterthan any solution provided by them) and branch on theremaining active sub-boxes. The process stops when-ever an \acceptable" solution is found (depends on therequired precision). Very recently, those methods havebeen extended using alignment as in Mount et al. [18]and, Hagedoorn and Veltkamp [19].To sum up, when scoring transformation H, we�rst check that we have a large common point set using(4). If so, we re�ne the score by using either (2) or (3)depending on the zoom factor of H. Finally, we spendmore time computing the score by applying (1) for theremaining transformations.In the following section, we focus on how to re-port a pool of candidate transformations in which oursolution is likely to be.4. Geometric �lteringThe basic idea of geometric �ltering is to constrain theproperties of feature matchings. We can input geomet-ric constraints like zoom value (e.g., in range [ 14 ; 4]) androtations (e.g., between [�60 deg; 45 deg]), and a preci-sion tolerance � (each feature can be moved into a ballcentered at it of radius �). Loosely speaking, we areinterested in �nding large common point sets, that isa set of transformations that match at least a numberof points greater than a given threshold. (For exampleif we want to recover the epipolar geometry, we mayask for at least 7 matching pairs of points). We do notchoose a largest common point set because of matchingartefactsy but it is very likely that our transformationlies in the ones matching large point sets.If no value of the threshold of the size of a largecommon point set is given, the system can estimateit in order to run into given time bounds. For anyplanar transformation T , we associate a characteristicvector v(T ) = (zoom(T ); angle(T )), where zoom(T ) isthe zoom value of T and angle(T ) is the rotation an-gle from the x-axis. The algorithm can report lexico-graphically the transformations T1; T2; ::: (that is suchthat v(T1) <= v(T2) <= :::) so that two job processes canrun simultaneously: (1) reporting potential transforma-tions (2) scoring the transformations and determiningif a plausible transformation has been found so far.Let � be the percentage of points required to matchup to an absolute error � (that is maxfd�jS1je; d�jS2jegpoints at least). Parameter � is useful in practice sinceit reects the perspective distribution of common fea-ture points, inliers, and possibly occluding parts (hid-den features or outliers). For example, a 50% overlapyWe mean that the transformation exhibiting a largestcommon point set may not necessarily be the one being usedfor mosaicing the images. However the mosaicing transfor-mation matches large common point sets.



NIELSEN: ALGORITHMS FOR MOSAICING SYSTEMS 5�=k 1 2 3 4 50:15 6:1 55 327:9 1199:3 13238:30:20 7:2 26:4 77:1 689:6 18586:10:35 2:9 8:4 19 59:5 321:40:5 2:1 3:7 7:8 25:6 30:70:60 1:7 2:7 5 12:2 140:75 1:4 2 2:2 3:5 4:2Table 1 Number of times, l, that the program enters the whileloop before �nding a good tuple (1 <= k <= 5) which de�nes an(�; �)-match. We used the pseudo-random generator drand48().at constant zoom with 50% of outliers of n = 40 pointfeatures, will match around 10 features (ie. � = 0:25).We are looking for a (�; �)-match, i.e. a transformationH that matches at least �n points up to some errortolerance �.Algorithm 1 The core selection algorithm1: H = Id2: while not found a (�; �)-matching homography Hdo3: Choose r points S 01 from S14: Draw at random a k-tuple P1 from S 015: while not Stop do6: Draw at random a k-tuple P2: k = jP2j pointsof S27: (* We use geometric FILTERING *)8: for all permutations P 02 or P2 do9: Compute the homography H that perfectlymatches tuple P1 to tuple P 0210: if S 01 is a (�; �)-match in S2 then11: if S1 is a (�; �)-match in S2 then12: if the characteristics of matched pointscorrelate satisfactorily then13: Stop14: end if15: end if16: end if17: end for18: end while19: end whileLet k be the number of features required in S1 andin S2 for computing a basic transformation that per-fectly matches pair by pair these 2k features (edges,corners, triple junctions, etc.). Using corners, we havek set to 4. Since we know that a signi�cant propor-tion of points in S1 will �-match, choosing at randoma k-tuple P1 and computing all induced homographieswith all other k-tuples of S2 will lead to the more e�-cient (by a square root factor) Monte-Carlo algorithm.Table 1 shows experimentally the number of times weloop before �nding a good k-tuple (independent of nusing the pseudo-random generator drand48()).The originality of our method consists in �lter-ing the potential tuples P2 by considering metric con-

straints imposed by the selection of P1. We call it geo-metric �ltering and it allows both in practice and the-ory to speed up the algorithm signi�cantly. For sake ofsimplicity, let us assume that we look for a translationand a rotation matching features of I1 into I2. Eachdetected feature point p lies in a ball B(p; �). We set� = 4� in order to take into account the fuzziness ofour features. Let p� denote the \visual" feature pointthat our feature extraction algorithm have approachedby p (p� 2 B(p; �)). Given any two feature points, wehave jd2(p�1; p�2) � d2(p1; p2)j <= 2�. Let L1; L2 2 S1 becorner points in image I1 (resp. image I2) that havebeen drawn randomly. Assuming uniform scaling fac-tor, instead of comparing (L1; L2) to all pairs (Ri; Rj),we choose for every point Ri 2 S2 as candidate for thesecond point Rj , all the points inside the ring whosecenter is Ri with minimum circle B(Ri; d2(L1; L2)�2�)and width 4� (see Figure 5). This can be done easilyusing buckets (as depicted in Figure 5) and extend nat-urally to zoom ranges and angle sectors. We balancethe preprocessing time of building the buckets with theprocessing time of querying it according to the intrinsicdi�culty of the point set (see [1] for details). The ideadepicted in Figure 8 is that we can count possibly fasterthan reporting points inside the annuli query. Thereforewe can adapt the size of the buckets in order to acco-modate the batched ring queries faster. Indeed, looselyspeaking, having a too �ne bucket costs much prepro-cesing time but answer queries quickly, while havinga coarse-sized bucket is fast to build but queries takemore time as illustrated in Fig 8.
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Fig. 5 Ring and sector queries on a bucket. A query behavesas a graphics �lling procedure, starting from an initial bucketcontained in the geometric ring and examining step by step allthe neighbors inside the geometric query until none are left.



6 IEICE TRANS. INF. & SYST., VOL. ??? JULY 2000, NO. ??? ??? 2000In the ideal case where the feature extraction al-gorithm ensures that p = p� for all features, we avoidtesting all the �n22 � pairs. Indeed, the maximum numberof \unit" distances de�ned by a collection of points isin between 
(n1+ clog logn ) and O(n 43 ), where c is a con-stant. Erd�os conjectured that the 
(n1+ clog log n ) boundis tight. This conjecture is related to the self similarityof a point set and arithmetic properties.We notice that we avoid testing most of the pairs(for example with n1 �= n2 = 1000 we skip more than99% of the pairs). Geometric �ltering is rather a gen-eral paradigm than some queries on rings. We maytherefore extend this approach by tailoring it to thespace of transformation and feature types. We mayalso increase k so that for example we require at least5 matching points. (We compute the homography thatminimizes the pairing error.) Figure 6 illustrates thequery for k = 3 points for a planar transformation.Set Motif (triangle)
Fig. 6 Looking for at least 3 matching points by querying.The bold regions indicates possible locations of the third pointR3 in S2 given already two selected features R1; R2.The other natural way to randomize, as alreadynoticed by Irani and Raghavan [20] (for alignment andgeometric hashing problems), is to avoid testing the en-tire set S2 but rather test only a subset of it, of size r.One way to proceed, is to select at the very beginning asubset S 01 of S1 of size r and for each rigid perspectivetransformation test whether �r points of S 01 match S2(thruH). If there exists such a transformation that pro-vides �r matching points, we test all of the n1 points.Notice that the subset S 01 may match locally severaltimes in S2. We will denote by s the maximum numberof times that S 01 can match in S2. That is s accountsfor the maximum number of distinct collineations thatproduces a (�; �)-match of S 01.In practice, s is very small and relates to the self-similarity [20] of a point set. Putting it all together, weget the probability of failure to report a transformationwhen it exists after the ith iteration bounded as follows:Pr(Failure) <= �(1 � �k ) + exp(��(1 � �)r)�i :As a corollary, for any � > 0, we can appropriatelychoose �, r and i such that the algorithm will fail with

Fig. 7 User interface for the Xstill system.probability at most 12q by only multiplying the overallcost by O�;�;r;k(q). We use this system with k = 2 (and� around 6 pixels). Once a rough planar transformationis found, we label inliers/outliers and compute the ho-mography that minimizes the pairing of correspondinginliers (using for example Kanatani's approach [21]).
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Fig. 8 Adjusting the width of a bucket. (Top) a 4x4 bucketused to report a superset of size 40 points containing the 7 pointsinside a geometric ring. (Bottom) After a re�nement,a 8x8 bucketused to report a superset of size 14 points containing the 7 pointsinside a geometric ring.We can implement easily the Haussdorf matchingas follows: we �rst build a Voronoi diagram on points ofS2 in O(n2 logn2) time [22]. Then, whenever we wantto check for a (�; �)-matching, we make n1 queries in-side the Voronoi diagram for a total cost ofO(n1 logn2).Therefore, under the Haussdorf matching, it costsO(Fk(n2)r logn2+sn1 logn2), where both s andFk(n2)



NIELSEN: ALGORITHMS FOR MOSAICING SYSTEMS 7are less than k!�n2k �. Implementing the bottleneckmatching is more costly. Efrat and Itai [8], [15] pro-posed an interative O(n2 logn2 + n 321 log n2)-time algo-rithm to determine whether there is an (�; �)-matchingor not. Using their algorithm as the test procedure,we obtain an O �Fk(n2)(n2 + r 32 ) logn2 + sn 321 logn2�-time randomized algorithm.5. DeghostingIn practice, it is di�cult to take still digital snapshotswhile maintaining the position of the optical center�xed without tripod (id., only rotating around the opti-cal center). Therefore the mapping of I1 onto I2 is onlyapproximated by a noisy homography (parallax errors).One way to cope with this problem is to compute a De-launay triangulation of the features that match S1 andS2 (inliers). (If segments are part of the feature sets,we may ask for a constrained Delaunay triangulation.)Also, we can compute the epipolar geometry and, oncethe fundamental matrix coding the 3d translation, rota-tion and scales between the two images is known, eachtriangle of the triangulation of I1 maps onto a corre-sponding triangle of I2. The induced transformationbetween I1 to I2 is then computed piecewise. However,we have not implemented this scheme since our purposewas to focus on pattern matching for image registrationproblem.6. Performance of the systemThe system Xstill has been implemented on Linux OSusing gnu C++ compiler and is about 10K lines ofcode. The program handles bundles of images as welland the user interface allows the user to possibly in-teract/set appropriate parameters (see Figure 7). Wedescribe below experimental data. We use drand48()as a pseudo-random number generator (vs. true ran-dom generator for theoretical analysis). The reportedvalues are subjective since it does depend on the imagedata set. (Indeed since our method is based on patternmatching, it is nontrivial to establish the pertinence ofthe extracted feature points with the information con-tained in the image!)On a pentium II MMX, with n1 = n2 = 50, � = 2%of image lengths and � = 50%, at constant zoom, thedeterministic algorithm takes 1.77sec and test 0:83% ofthe possible planar transformations. The randomizedalgorithm takes 0.01sec and test 0:0075% of the possi-ble transformations. At zoom factor 2, the determin-istic algorithm selected 3:8% of the transformations in7.8sec while the randomized algorithm examined 0:07%in 0.17sec. At zoom 4, in 9.8sec, we looked at 4:75% ofthe possible transformations, compared to a bare 0.3secfor the randomized algorithm that looked at 0:14% ofthe possible transformations. For larger zoom values,

Fig. 9 Mosaicing of two images (zoom=2, rotation=67 deg)(with � = 6 pixels and n = n1 = n2 = 35).the percentage of inliers tend to decrease quickly be-cause feature extractors become less reliable. Also, itis an open problem to �nd a `worse' con�guration ofthe features (related to Erd�os' conjecture). Once thehomography has been found the overhead for warpingand blending images is typically around 1 or 2 seconds.7. Ongoing researchFor large zoom values (greater than 4), the detected fea-tures are not that precise (parameter �) and the inducedhomographies are noticeably unstable. Moreover, thegreater the zoom value, the larger the point set size n,and the slower the system. In practice, we would alsolike to detect parts that have been static (ie., the back-ground) from the ones which have dynamically changed(eg., pictures taken with people walking in an exhibi-tion hall, etc.).Our paradigm can be used as well for tackling var-ious other problems (like merging 3d depth data setsobtained from range �nding or active vision). Somefundamental problems linked to the large common pointset solver are symmetry, congruency and similarity ofpoint sets. Any improvement of those core algorithmsmay deliver faster guaranteed pattern matching algo-rithms, and provide a wider use of feature-based mo-saicing.
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