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a b s t r a c t

A mixture model in statistics is a powerful framework commonly used to estimate the

probability measure function of a random variable. Most algorithms handling mixture

models were originally specifically designed for processing mixtures of Gaussians.

However, other distributions such as Poisson, multinomial, Gamma/Beta have gained

interest in signal processing in the past decades. These common distributions are

unified in the framework of exponential families in statistics. In this paper, we present

three generic clustering algorithms working on arbitrary mixtures of exponential

families: the Bregman soft clustering, the Bregman hard clustering, and the Bregman

hierarchical clustering. These algorithms allow one to estimate a mixture model from

observations, to simplify such a mixture model, and to automatically learn the

‘‘optimal’’ number of components in a simplified mixture model according to a

resolution parameter. In addition, we present jMEF, an open source JavaTM library

allowing users to create, process and manage mixtures of exponential families. In

particular, jMEF includes the three aforementioned Bregman clustering algorithms.

& 2010 Elsevier B.V. All rights reserved.
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1. Introduction

A mixture model is a powerful framework commonly
used to estimate the probability measure function of a
random variable. For instance, the mixtures of Gaussians
have been widely used in many different application
domains including statistics, image and signal processing,
physics, biology, finance, etc. Let us consider a mixture
model f of n components. The probability density function
f evaluated at x 2 Rd is given by

f ðxÞ ¼
Xn

i ¼ 1

aifiðxÞ ð1Þ

where fi is a statistical distribution and ai 2 ½0,1� are the
normalized weights associated to the fi’s such thatPn

i ¼ 1 ai ¼ 1.
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The spread of mixture models implies to use algorithms
devoted to such mixtures (e.g. mixture simplification
algorithms). Most of these seminal algorithms were
specifically designed for mixtures of Gaussians since they
represent in practice the most commonly met mixture
models. However, the use of other distribution models such
as Poisson, multinomial, Gamma and Beta have gained
interest in signal processing in the past decades (cf. [1,2] for
non-Gaussianity of data sets). Usually, adapting the Gaus-
sian toolbox of standard algorithms to these newly met
distribution models is a laborious and complex task. The
exponential families are a wide class of distributions
including the most common distribution models: Gaussian,
Poisson, Laplacian, binomial, multinomial, Bernoulli,
Rayleigh, Beta, Gamma, etc. (cf. [3]). Based on these families,
we can define generic algorithms adapted not only to
mixtures of Gaussians, but adapted to the most common
mixture models.

Since the amount of algorithms processing mixture
models is quite large, we focus in this paper on
the clustering algorithms: soft/hard membership and
87
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hierarchical clusterings. Our first contribution is to
generalize those classical clustering algorithms to
arbitrary mixtures of exponential families using the
framework of Bregman divergences. Therefore, these
algorithms are, respectively, called Bregman soft cluster-
ing, Bregman hard clustering, and Bregman hierarchical
clustering. The Bregman soft clustering algorithm is the
adaptation of the expectation–maximization (EM)
algorithm allowing one to estimate the parameters of a
mixture of exponential families from a set of observation
points (random samples). The Bregman hard clustering
algorithm is the adaptation of the celebrated k-means
algorithm toward mixtures of exponential families and
Bregman divergence. This hard clustering algorithm
appears to be a very efficient mixture simplification
algorithm. The Bregman hierarchical clustering algorithm
creates a hierarchical mixture model from an initial
mixture of exponential families. This hierarchical mixture
model allows first to quickly simplify the initial mixture,
and second to automatically learn the optimal number of
components in the simplified mixture, according to some
resolution parameter.

Our second contribution consists in briefly introducing
the open source jMEF library: a JavaTM library for
Mixtures of Exponential Families. This cross-platform
library allows users to create, process and manage
mixtures of exponential families. In particular, jMEF

includes the implementations of the three described
Bregman clustering algorithms. The open source library
is freely available at http://www.lix.polytechnique.fr/
�nielsen/MEF.

The paper is organized as follows: Section 2 introduces
the theoretical background (Bregman divergence and
Bregman centroids) required in Section 3. Section 3
presents the Bregman soft, hard and hierarchical
clusterings with a brief introduction to the jMEF library.
Section 4 proposes some experiments with applications to
image processing, and compare our approaches to the
state of the art. Finally, Section 5 concludes the paper.
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2. Exponential family and Bregman divergence

In this section, we introduce the theoretical
background required for the clustering part of Section 3.
First, we present in Section 2.1 the link existing between
the Kullback–Leibler (also known as the relative entropy)
and Bregman divergences. Second, we briefly introduce
(Section 2.2) the dual canonical parameterizations of
distributions belonging to an exponential family. Finally,
we present in Section 2.3 the concept of Bregman
centroids.
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2.1. Relative entropy, exponential family, and Bregman

divergence

The fundamental measure between statistical
distributions is the relative entropy, also called the
Kullback–Leibler divergence (denoted by KLD, cf. [4,5]).
Given two distributions fi and fj, the KLD is an oriented
Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
distance (asymmetric) and is defined as

DKLðfiJfjÞ ¼

Z
x

fiðxÞlog
fiðxÞ

fjðxÞ
dx ð2Þ

The relative entropy is not a metric but satisfies positive-
definiteness DKLðf JgÞZ0 (called Gibb’s inequality in the
literature). If, for instance, fi and fj are two multivariate
Gaussian distributions parametrized by their respective
mean mi and mj and by their corresponding variance–
covariance matrix Si and Sj, the fastidious integral
computation of Eq. (2) leads to a closed form expression
of the KLD:

DKLðfiJfjÞ ¼
1

2
log
jSjj

jSij
þ

1

2
trðS�1

j SiÞ

þ
1

2
ðmj�miÞ

>S�1
j ðmj�miÞ�

d

2
ð3Þ

where jSj and trðSÞ are, respectively, the determinant and
the trace operator. We can avoid the integral computation
using the canonical form of exponential families (cf. [6])

fF ðx;HÞ ¼ expf/H,tðxÞS�FðHÞþkðxÞg ð4Þ

where H are the natural parameters (see Section 2.2), and
t(x) the sufficient statistics. The log normalizer FðHÞ is
a strictly convex and differentiable function that
characterizes uniquely the exponential family, and the
function k(x) is the carrier measure. The classical distribu-
tions Gaussian, Laplacian, Poisson, binomial, Bernoulli,
multinomial, Rayleigh, Gamma, Beta, and Dirichlet are all
exponential families. For instance, let us consider the case
of a multivariate Gaussian distribution:

f ðx;m,SÞ ¼
1

ð2pÞd=2
jSj1=2

exp �
ðx�mÞ>S�1

ðx�mÞ
2

 !
ð5Þ

This distribution is an exponential family which can be
written in a canonical form (see Eq. (4)) by defining

H¼ ðy,YÞ ¼ ðS�1m,1
2S
�1
Þ ð6Þ

FðHÞ ¼
1

4
trðY�1yy>Þ�

1

2
logjYjþ

d

2
logp ð7Þ

tðxÞ ¼ ðx,�xx>Þ ð8Þ

kðxÞ ¼ 0 ð9Þ

where H is a mixed-type vector/matrix parameter. The
computation of these expressions can be laborious and
prone to errors. Therefore, we have gathered in Nielsen
and Garcia [3] the decomposition as exponential families
(canonical form) of most classical distributions.

Interestingly, the relative entropy between two mem-
bers of the same exponential family is equal to the
Bregman divergence on the swapped natural parameters
and defined for the log normalizer F:

DKLðfiJfjÞ ¼DF ðHjJHiÞ ð10Þ

where

DF ðHjJHiÞ ¼ FðHjÞ�FðHiÞ�/Hj�Hi,rFðHiÞS ð11Þ

In Eq. (11), / � , �S denotes the inner product and r is the
gradient operator. In the case of mixed-type vector/matrix
parameters (e.g. Gaussian distributions), the inner
ation and hierarchical representations of mixtures of
ro.2010.05.024
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product /Hp,HqS is a composite inner product obtained
as the sum of two inner products of vectors and matrices

/Hp,HqS¼/Yp,YqSþ/yp,yqS ð12Þ

where the inner product of vectors is the dot product
/yp,yqS¼ y>p yq, and the inner product of two matrices is
defined by

/Yp,YqS¼ trðYpY>q Þ ¼ trðYqY>p Þ ð13Þ

Thanks to this formalism, we can define a family of
algorithms suitable to any mixture of exponential
families.

2.2. Distribution parameters: dual canonical coordinate

systems

We now present an essential notion of convex analysis:
the Legendre–Fenchel transformation (informally called the
slope transformation). Any convex function F admits a dual
conjugate convex function F�:

F�ðx0Þ ¼ sup
x
f/x0,xS�FðxÞg

x0 is called the dual variable. The supremum is reached at
the unique point where the gradient of Gðx0Þ ¼/x0,xS�FðxÞ

vanishes or, equivalently, when x0 ¼ rFðxÞ. x and x0 are
called dual parameterizations.

Thus a distribution fF belonging to an exponential
family can be equivalently parametrized by its source
parameters K, its natural parameters H, or by its dual
expectation parameters H (see [3]). The conversion
procedures from natural to expectation parameters (and
conversely) are the following:

H¼rFðHÞ ð14Þ

H¼rF�ðHÞ ð15Þ

where F� is the dual Legendre of the log normalizer F, also
denoted by G=F� in the remainder.

For the sake of brevity, the conversion procedures from
source to natural parameters (and conversely) and from
source to expectation parameters (and conversely) for the
most classical distributions (exponential families)
are given in Nielsen and Garcia [3]. The algorithms
proposed/presented in this paper consider either natural
parameters or expectation parameters. The context
should be clear enough to avoid any confusion.

2.3. Bregman centroids

Given a set S of n weighted distributions parametrized
by their natural parameters

S ¼ ffa1,H1g,fa2,H2g, . . . ,fan,Hngg ð16Þ

the Bregman centroid (cf. [7]) is the point (parameter in
the natural coordinate system) minimizing the average
Bregman divergence with the distribution parameters of
S. Similarly to the Kullback–Leibler divergence, the
Bregman divergence is an asymmetric1 measure. As a
consequence, we must consider three types of centroids:
116
1 Right-sided, left-sided, and symmetric Bregman divergences.

Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
right-sided centroid HR, left-sided centroid HL, and
symmetric centroids HS, respectively, satisfying the
following equations:

HR ¼ argmin
H

1P
iai

X
i

aiDF ðHiJHÞ ð17Þ

HL ¼ argmin
H

1P
iai

X
i

aiDF ðHJHiÞ ð18Þ

HS ¼ argmin
H

1P
iai

X
i

aiSDF ðH,HiÞ ð19Þ

where SDF is the symmetric Bregman divergence given by

SDF ðH,HiÞ ¼
DF ðHiJHÞþDF ðHJHiÞ

2
ð20Þ

The minimization of Eqs. (17) and (18) provides closed-
form expressions for both right-sided and left-sided
centroids (see [7]):

HR ¼

P
iaiHiP

iai
ð21Þ

HL ¼rF�
P

iairFðHiÞP
iai

� �
ð22Þ

where rF� is the gradient of the dual Legendre of the log
normalizer F. The symmetric centroid does not have a
closed-form expression and has to be estimated from both
the right- and the left-sided centroids. Indeed, the
symmetric centroid HS belongs to the geodesic link
between HR and HL (cf. [7]). The following equation
allows one to walk on this geodesic link

Hl ¼rF�ðlrFðHRÞþð1�lÞrFðHLÞÞ ð23Þ

where l 2 ½0,1�. For l¼ 0 we have Hl ¼HL, and for l¼ 1
we have Hl ¼HR. The symmetric centroid must verify the
following constraint:

SDF ðHS,HRÞ ¼ SDF ðHS,HLÞ ð24Þ

A standard bisection search on the parameter l (cf.
Eq. (23)) allows to estimate in a few steps the parameters
of the symmetric centroid HS for a given precision.

The concept of Bregman centroid is somehow abstract

and need to be clarified. We give here a visual example in
order to help the reader grasp a good understanding of
those different types of Bregman centroids. We created a
set S of four univariate Gaussians with similar variance
s2 ¼ 6. The means of these Gaussians were, respectively,
set to m1 ¼ 10, m2 ¼ 20, m3 ¼ 30, and m4 ¼ 40. Then, we
computed from S the centroids HR, HL, and HS. The
parameters of these centroids are reported bellow:

HR ¼ ðm¼ 25,s2 ¼ 131Þ

HL ¼ ðm¼ 25,s2 ¼ 6Þ

HS ¼ ðm¼ 25,s2 ¼ 28Þ

Fig. 1 illustrates the four Gaussians of S as well as the
three computed centroids. First, the means of the three
centroids were all equal to 25. This is due to the fact that
the variance s2 was shared by the four Gaussians. Second,
the variance of the left-sided centroid is equal to the
ation and hierarchical representations of mixtures of
ro.2010.05.024
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variance of the Gaussians of S (average of the variances).
The left-sided centroid is indeed called ‘‘generalized
centroid’’. On the contrary, the variance of the right-
sided centroid is very large, this centroid trying
to encompass the Gaussians of S (that is, to adhere
more to the support of all Gaussians). The variance of
the symmetric centroid is ‘‘between’’ the variances of the
right-sided centroid and the left-sided centroid.

As a consequence, the choice of the centroid
(i.e. Bregman divergence) used should depend on the
application: the left-sided centroid provides an average
distribution, the right-sided centroid provides an
encompassing distribution, and symmetric centroid
provides a trade-off between the right-sided and the
left-sided centroids.

3. Bregman clustering

The literature of clustering algorithms for mixture of
exponential families barely exists. As a consequence, this
section presents the state of the art as well as the
contributions of the paper. Some existing methods (soft
and hard clustering algorithms, Sections 3.1 and 3.2) are
presented and modified to fit our needs. The hierarchical
clustering (Section 3.3) is an original contribution, and
Section 3.4 presents the open source jMEF library
implementing these three clustering algorithms.

3.1. Bregman soft clustering

Proposed by Dempster et al. in 1977 (cf. [8]), the
expectation–maximization (EM) algorithm is an efficient
and widely used method to estimate the model para-
meters from a set of observations (e.g. points) by
maximizing the likelihood. EM is an iterative method
which alternates the expectation step (E-step) and the
maximization step (M-step). EM algorithm is also known
as soft clustering: each observation has a probability to
belong to each model.

The Bregman soft clustering, originally proposed by
Banerjee et al. [6], is the adaptation of the EM algorithm
allowing one to estimate the parameters of a mixture of
exponential families from a point set S (observations). As
Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
in the classical EM algorithm, the Bregman soft clustering
starts with an initialization step and then alternates the
E-step and the M-step. The process stops if the increase in
likelihood is smaller than a given threshold or if the
number of iterations is greater than a user prescribed
value.

Initialization step: The initialization step computes an
initial mixture of exponential families from the set of
observations. This initial mixture is indeed needed in the
first call of the E-step. First, the points (observations) are
gathered into n subsets S1, . . . ,Sn using a classical
k-means algorithm (cf. [9] and Section 3.2). The weight
aj and the expectation parameters Hj of the jth mixture
component are given by

aj ¼
jSjj

jSj ð25Þ

Hj ¼
1

jSjj

X
fijxi2Sjg

tðxiÞ ð26Þ

where jSjj denotes the cardinality of the subset Sj and t(x)
is the sufficient statistic. (This is because the maximum
likelihood estimator for an exponential family of a set of
i.i.d. observations is provably the center of mass in the
expectation coordinate system. This point is called
the observation point in information geometry. Note that
to estimate the H expectation parameter, we only
rely on the sufficient statistics aggregating compactly all
information contained in the observation sample, hence
its name.)

E-step: The E-step consists in computing the prob-
ability p(i,j) that the observation xi has been generated by
the jth distribution

pði,jÞ ¼
ajexpð�DGðtðxiÞ,HjÞÞexpðkðxiÞÞPn

l ¼ 1 alexpð�DGðtðxiÞ,HlÞÞexpðkðxiÞÞ
ð27Þ

where k(x) is the carrier measure and DGð�,�Þ is the
divergence associated with G=F� (dual Legendre of the
log normalizer F) given by

DGðpJqÞ ¼ GðpÞ�GðqÞ�/p�q,rGðqÞS ð28Þ

However, the computation of p(i,j) as proposed in Eq. (27)
implies to compute G(t(xi)) which is equal to � 1

2 log0 in
ation and hierarchical representations of mixtures of
ro.2010.05.024
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the case Gaussian distributions. To solve2 this problem,
we simply expand Eq. (28) to Eq. (27). We then factorize
and simplify G(t(xi)) in both numerator and denominator.
Thus, p(i,j) is given by

pði,jÞ ¼
ajexpðGðHjÞþ/tðxiÞ�Hj,rGðHjÞSÞPn

l ¼ 1 alexpðGðHlÞþ/tðxiÞ�Hl,rGðHlÞSÞ
ð29Þ

M-step: Then, based on p(i,j), the M-step computes the
weight and distribution parameters of the jth distribution
as follows:

aj ¼
1

N

XN

i ¼ 1

pði,jÞ ð30Þ

Hj ¼

PN
i ¼ 1 pði,jÞtðxiÞPN

i ¼ 1 pði,jÞ
ð31Þ

The difference here with the original work (cf. [6]) is
first the modification of Eq. (27) into Eq. (29), and second
the adaptation of the algorithm for mixtures of exponen-
tial families. Although small, the contribution of this
section is fundamental (if not crucial) to estimate the
parameters of any mixture of exponential families
(including the familiar Gaussian distributions) from a
given point set.

3.2. Bregman hard clustering

Let f be a mixture model of n components:

f ðxÞ ¼
Xn

i ¼ 1

aifiðxÞ ð32Þ

A mixture simplification algorithm consists in computing,
from the initial mixture f, a simpler mixture g of m

components with 0rmon such that g is the best

approximation of f. The simplification allows one to avoid
the fastidious estimation (in terms of computation time)
of g from the initial observations, to speed-up the
computation of statistical measures, or to compare
mixtures of different size [10]. In this section, we present
a simplification algorithm adapted for mixtures of
exponential families [11].

The k-means algorithm [9], also known as Lloyd’s
algorithm or hard clustering algorithm, is a method of
cluster analysis which aims to partition a set of observa-
tions S (e.g. points) into k clusters (subsets) S1, . . . ,Sk,
each cluster being determined by its centroid. The
k-means algorithm alternates an assignment step, which
assign points to the cluster with the closest centroid, and
an update step, which update centroids from the point
repartition. The original Bregman hard clustering
algorithm [6] is the adaptation of the k-means algorithm
towards exponential families. Here, we improve this
method and define a fast simplification method for
mixtures of exponential families.
115

116

2 We thank Banerjee (cf. [6]) for acknowledging the problem and

email correspondences concerning this matter. Indeed, in Banerjee et al.

[6], the authors consider a compact ‘‘equivalent’’ expression of

exponential families: expð/x,yS�FðyÞÞ.

Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
A mixture of exponential families f can be considered
as a set S of n weighted distributions parametrized by
their natural parameters:

S ¼ ffa1,H1g, . . . ,fan,Hngg

The Bregman hard clustering consists in computing from
S a set of m weighted distributions Cj ¼ faj,Hjg, for j in
[1,m], called centroid. The value m is usually user defined
and depends on the application requirements. However,
this value can be learnt from the initial mixture as
presented in Section 3.3. Recall that the Bregman
divergence is an asymmetric measure. As a consequence,
three versions of the Bregman hard clustering are
considered, respectively, based on the right-sided, left-
sided, and symmetric Bregman divergences. We present
below the Bregman hard clustering based on the right-
sided Bregman divergence. Indeed, the adaptation to the
left-sided and to the symmetric Bregman divergences is
trivial. As in the classical k-means algorithm, the Bregman
hard clustering starts with an initialization step and then
alternates the assignment and the update steps (centroid
relocation).

Initialization step: The first step of the algorithm
initializes the m clusters Sj by initializing the m centroids
Cj ¼ faj,Hjg for j in [1,m]. The simplest method consists in
randomly picking m weighted distributions among S, the
m centroids having to be different from each other
(different distribution parameters). This makes sure that,
after the assignment step, no cluster will be empty.

Recently, Arthur and Vassilvitskii (cf. [12]) proposed
the k-means++ algorithm which optimizes the centroid
initialization based on a random technique. The experi-
mentations proposed by the authors show that their
approach improves both the speed and the accuracy of k-
means. The k-means++ algorithm can be easily adapted to
mixture of exponential families and Bregman divergence.
Indeed, the classical distance (usually square Euclidean
distance) is simply replaced by the Bregman divergence.

Assignment step: Given a set of m centroids Cj ¼ faj,Hjg

for j in [1,m], the assignment step assigns each weighted
distribution fai,Hig cluster with the closest centroid. For
instance, the distribution fai,Hig belongs to the cluster Sj

if and only if

DF ðHiJHjÞrDF ðHiJH lÞ, 8l 2 ½1,m�: ð33Þ

Update step: The parameters of the centroid Cj are
updated from the distributions belonging to Sj. Actually,
Cj is the right-sided Bregman centroid of the cluster Sj as
presented in Section 2.3. The weight aj is the sum of the
weights belonging to Sj:

aj ¼
X

i

ai s:t: fai,Hig 2 Sj ð34Þ

The algorithm alternates assignment and update steps
until the assignment step no longer changes.

The extension of the Bregman hard clustering to
left-sided Bregman divergence (resp. symmetric Bregman
divergence) is obtained by replacing the right-sided
Bregman divergence (initialization and assignment steps)
and the right-sided centroid (update step), respectively,
by the left-sided Bregman divergence (resp. symmetric
ation and hierarchical representations of mixtures of
ro.2010.05.024
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Bregman divergence) and by the left-sided centroid (resp.
symmetric centroid).

As mentioned before, the output of the algorithm is a
set of centroids (weighted distributions) Cj. This set can be
considered as a mixture of exponential families g. It turns
out that g is a simplified version of the initial mixture f.
Thus, applied in the context of mixture simplification, the
Bregman hard clustering appears to be a very efficient
method both in terms of quality and computation time.
Indeed, experiments (cf. Section 4.5) report that the
Bregman hard clustering compare favorably to the state
of the art UTAC algorithm (cf. [13]). One major drawback
of the UTAC method is that it requires to compute the
eigenvectors of the covariance matrices, a highly time-
consuming operation.
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3.3. Bregman hierarchical clustering

In this section, we propose a new method which (1)
provide a hierarchical representation of an initial mixture
of exponential families f, (2) allow to quickly simply f into
a mixture of an arbitrary size m, and (3) learn the optimal

value of m.
In the context of cluster analysis, hierarchical clustering

is a set of methods consisting in building a hierarchical
clustering of a set of objects (e.g. points). Hierarchical
clustering is generally subdivided into two categories:
agglomerative methods and divisive methods. In this
paper, we will only consider the agglomerative methods.
Let S be a set of objects and let fS1,S2, . . . ,Sng be a
partition of S such that

Pn
i ¼ 1 jSij ¼ jSj where jSij denotes

the cardinality of Si. The first step of the algorithm
determines the two closest subsets Si and Sj, relatively to
a distance D(.,.), among the n(n�1) possible combina-
tions. The second step merges the subsets Si and Sj into a
single subset. The algorithm usually starts with subsets
containing one object (if jSj ¼ n, then the initial partition
contains n subsets) and alternates the first and the second
steps until having a single set equal to S. The initial
subsets and the way these subsets were merged are
stored into a hierarchical structure called dendrogram. The
distance D(.,.) between subsets, also known as linkage
criterion, determines the order of the subset merging. Let
A and B be two sets of objects (e.g. points) and let d(.,.) be
a distance between two objects (e.g. the Euclidean
distance). Table 1 presents the three most classical
linkage criteria: the minimum, the maximum, and the
average distances.

The Bregman hierarchical clustering algorithm is the
instantiation of the hierarchical clustering to the case of
mixtures of exponential families and Bregman divergence.
113

114

115

116

Table 1
Classical linkage criteria: minimum, maximum, and average distances.

Criterion Formula

Minimum distance DminðA,BÞ ¼minfdða,bÞja 2 A,b 2 Bg

Maximum distance DmaxðA,BÞ ¼maxfdða,bÞja 2 A,b 2 Bg

Average distance
DavðA,BÞ ¼

1

jAjjBj

P
a2A

P
b2Bdða,bÞ

Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
As for the Bregman hard clustering algorithm, we consider
a mixture of exponential families f as a set of n weighted
distributions:

S ¼ ffa1,H1g, . . . ,fan,Hngg

Similarly to the classical algorithm, the initial clusters
contain each one a weighted distribution fai,Hig. In the
step one, the distance d(.,.) is then replaced by the
Bregman divergence to compute the linkage criterion.
Then, step two is a classical merging procedure. Keeping
in mind that the Bregman divergence is an asymmetric
measure, we can define three different Bregman
hierarchical clusterings. The use of a symmetric measure
(symmetric Bregman divergence) seems to be more
appropriate since all considered weighted distributions
belong to the same mixture of exponential families.
However, a non-symmetric measure can be used as well.
This will be discussed later on.

The proposed algorithm creates a hierarchical struc-
ture (dendrogram), called hierarchical mixture model,
containing the weighted distributions and the informa-
tion relative to the subset merging. Interestingly, this
structure allows one to quickly compute a simpler
mixture g with an arbitrary number of components. We
define the mixture of resolution r as the mixture g of r

components

g ¼
Xr

j ¼ 1

bjgj ð35Þ

builds from the r subsets S1, . . . ,Sr remaining after the
iteration n�r of the Bregman hierarchical clustering
algorithm, subsets extracted from the hierarchical
mixture model. The parameters of the jth component
are computed from the weighted distributions belonging
to the subset Sj. The distribution gj is the centroid (right-
sided, left-sided, or symmetric centroid) of the subset Sj

(cf. Section 2.3). The weight bj is computed as

bj ¼
X

i

ai s:t: fai,Hig 2 Sj ð36Þ

Section 4.6 will show that this mixture simplification
process is almost instantaneous. Since all the combina-
tions are considered during the first step of the algorithm,
the two subsets selected to be merged are the same using
either the right-sided or the left-sided Bregman
divergence. As a consequence, the hierarchical mixture
model is strictly the same with both left- and right-sided
Bregman divergences. However, the mixture simplifica-
tion based on the hierarchical mixture model depends on
the divergence chosen since the right-sided and left-sided
centroids are different. The hierarchical mixture model
built using the symmetric Bregman divergence is different
from the one built using a sided Bregman divergence.
Moreover, the use of a symmetric measure allows to
speed-up the step one of the algorithm (selection step) by
considering nðn�1Þ=2 couples of subsets instead of
n(n�1).

The hierarchical mixture model gathers into a same
structure all the possible resolutions (from 1 to n). This
hierarchical structure allows us to introduce a new
method to automatically learn the optimal number of
ation and hierarchical representations of mixtures of
ro.2010.05.024
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components in the simplified mixture g. The notion of
optimality is relative to the two following constraints that
the proposed method must satisfy:
65
1.
P
e

g has to be as compact as possible,

67
2.
69
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79
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g must reach a minimum prescribed quality
DKLðf ,gÞrt,

where DKLðf JgÞ is here the Kullback–Leibler divergence
estimated by a Monte-Carlo method since it does not
admit a closed-form expression for mixture of exponential
families. The minimum quality t is a user defined
parameter. Indeed, any learning method is based at least
on one parameter and constraining the mixture quality
instead of constraining the number of components is the
most appropriated approach.

The learning process is based on the following
assumption (verified in practice): the simplification
quality increases (DKL(f,g) decreases) with the resolution
(see Fig. 10). Therefore, a standard binary search
algorithm on the resolution allows one to quickly learn
the optimal number of components m in the simplified
mixture.

3.4. jMEF: Java library for mixtures of exponential families

In this section, we briefly introduce jMEF.3 jMEF is a
cross-platform JavaTM library designed to create, process
and manage mixtures of exponential families. To be more
specific, jMEF allows one to:
93

�
 create and manage mixtures of exponential families,
95
�
 estimate the parameters of a mixture of exponential
families using Bregman soft clustering (cf. Section 3.1),
97
�
 simplify mixtures using Bregman hard clustering
(cf. Section 3.2),
99
�
 define a hierarchical mixture model using the Bregman
hierarchical clustering (cf. Section 3.3),
101
�
103

105

107

109

111

112
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115

Table 2
Normalized mutual information (NMI) between the original cluster and

the estimated clusters.

Generative

model

Gaussian Poisson Binomial

Gaussian 0:914870:0615 0:875270:0687 0:898070:0706

Poisson 0:737470:0577 0:836470:0818 0:811470:0723

Binomial 0:855570:0456 0:950370:0446 0:952670:0474
and automatically retrieve the optimal number of
components in the mixture using the hierarchical
mixture model (cf. Section 3.3).

The source code is available on-line at http://www.lix.
polytechnique.fr/�nielsen/MEF and is licensed under an
open source MIT License (a Matlabs wrapper is also
available). The experiments presented in Section 4 were
based on a code entirely written using the jMEF library. As
a consequence, these experiments are reproducible, and
are provided as self-contained tutorials of this library.

4. Experiments

4.1. Introduction and setup

All the procedures used in the following experiments
were written using the jMEF library presented in Section
3.4. The computer used was a Dell Precision M6400 laptop
3 Java library for Mixtures of Exponential Families.

lease cite this article as: V. Garcia, F. Nielsen, Simplific
xponential families, Signal Process. (2010), doi:10.1016/j.sigp
(Intel Core 2 duo at 2.53 GHz, 4Go DDR2 memory,
Windows XP 32 bits, Java 1.6).

4.2. Bregman soft clustering

The first experiment is similar to an experiment
proposed by Banerjee et al. [6]. We created three mixtures
of exponential families, each mixture having three
components:
�

The

the

atio
ro
Mixture of Gaussian distributions with m1 ¼ 10,
m2 ¼ 20, m3 ¼ 40, and s2

1 ¼ s2
2 ¼ s2

3 ¼ 25.

�
 Mixture of Poisson distributions with l1 ¼ 10, l2 ¼ 20,

l3 ¼ 40.

�
 Mixture of binomial distributions with p1=0.1, p2=0.2,

p3=0.4 and the number of trials n=100.

The mixtures were created to be similar in shape with
distributions, respectively, centered on 10, 20 and 40. The
distributions’ weight was set to a¼ 1

3 for all the mixture
distributions. We randomly drew 1000 points from each
mixture that we stored in three different tables (one for
each mixture). For each point set, we estimated a mixture
of Gaussian distributions, a mixture of Poisson distribu-
tions, and a mixture of binomial distributions using the
proposed Bregman soft clustering algorithm. The max-
imum number of iterations of the Bregman soft clustering
was set to 30. The quality of the clustering was measured
in terms of normalized mutual information (denoted NMI,
cf. [14]) between the predicted clusters and original
clusters. The NMI is equal to 1 is the two clusters are
similar, and is close to 0 if they are mostly different. The
results were averaged over 100 trials. A point assigned to
one class (highest distribution value) for the generative
mixture can indeed be assigned to another class for
the estimated mixture. Table 2 presents the NMI for the
different possible combinations. We can see that the
clustering quality is better when the mixture model
estimated using the Bregman soft clustering algorithm
matches the generative mixture model.

This experiment first confirms the experiment of
Banerjee et al. [6] and second validates the jMEF code.

4.3. Bregman soft clustering and statistical images

Mixtures of Gaussians are, by far, the most often used
mixture models. In this experiment, we show that we can
roughly describe an image (visual representation) using a
116rows correspond to different generative models and the columns to

estimated models.

n and hierarchical representations of mixtures of
.2010.05.024
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Fig. 2. Application of Bregman soft clustering to statistical images. Input images (first row) are (from left to right) Baboon, Lena, Shantytown, and

Colormap. The second row illustrates the mixtures of Gaussians estimated from the input images. The third row shows the statistical images generated

from mixtures of Gaussians.
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compact mixture of Gaussians. A typical application of
such a representation is color image retrieval.

Given an input image (see Fig. 2, first row), we
considered a pixel p as a point in a five-dimensional space

p¼ ðpR,pG,pB,pX ,pyÞ
>

where {pR, pG, pB} represent the RGB4 color information of
the pixel, and {pX, pY} are spatial information (the position
of the pixel, respectively, the column and the row index).
Each input image contained 65 536 pixels (image size 256
�256 pixels). Using the Bregman soft clustering on the
set pixels, we estimated a mixture of Gaussians f of 32
components. As presented below, the value 32, chosen
arbitrary, allowed to capture the image structure and
provided a relatively compact mixture model. However,
another value could have been chosen instead.

Each Gaussian distribution of the estimated mixture
was parametrized by its mean

m¼ ðmR,mG,mB,mX ,myÞ
>

and its covariance matrix S. The second row of Fig. 2
illustrates the estimated mixture for each input image.
Each distribution is represented by an ellipse centered on
fmX ,mY g. The color of the ellipse is fmR,mG,mBg in the RGB
colorspace and its shape is determined by the covariance
matrix S. The input images were Baboon, Lena, Shanty-
town, and Colormap. At this stage, the fact that an image
can be represented by a mixture of Gaussians is not clear
4 RGB: color components red, green, and blue.

Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
yet. Then, we filled an empty image of size 256 �256
pixels with pixels p randomly drawn (color+position)
from the estimated mixture, each point being rounded to
the nearest neighbor such that p 2 ½0,255�5. Points out of
range were simply ignored. In order to have a smooth
result, we drew points from f until having at least 20
sample points by pixel position {pX,pY}. The color value of
the statistical image pixel at the position {pX,pY} was the
average color value of the drawn points at the same
position. The resulting image is called statistical image

since it was generated from a mixture of statistical
distributions. The third row of Fig. 2 illustrates the
statistical images for the input images. One can roughly
recognize image Baboon, Lena, and Shantytown. The main
structure of the images was captured5 by the mixtures
such as, for instance, the nose and the cheeks of Baboon,
and the hat of Lena. The statistical image generated from
Colormap was a very precise representation of the initial
image. Indeed, Colormap is, by definition, a statistical
image. It does not have well defined structures as in
natural images but the probability of a color appearance
at a given position is well captured by the mixture
components.

The proposed experiment shows that the image
structure can be captured into a mixture of Gaussians.
The image is then represented by a small set of
parameters (in comparison to the number of pixels)
which is well adapted to applications such as color image
116
5 As expected, high-frequencies of edges are not revealed.

ation and hierarchical representations of mixtures of
ro.2010.05.024
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retrieval. Considering an input image represented by its
mixture of Gaussians, it is then trivial to retrieve, in an
image database, a set of images that have a similar color
organization.

One can ask why the RGB colorspace has been chosen
here since other colorspaces such as YUV or Lab are
known to be more suited to image processing? The use of
such a colorspace implies to write conversion procedures.
Using the RGB colorspace, we have been able to clearly
present statistical images without increasing the code
complexity.
73

75

77

79
4.4. Mixture simplification applied to image segmentation

In this experiment, we use the Bregman hard cluster-
ing (cf. Section 3.2) to simplify mixtures of Gaussians in
the context of clustering-based image segmentation. Let f
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Fig. 3. Evolution of the mixture simplification quality DKL(f,g) as a function of nu
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be a mixture of Gaussians of n components in a three-
dimensional space. Given a color image I, a pixel p is here
considered as a point in R3

p¼ ðpR,pG,pBÞ
>

where pR, pG, pB are the RGB color information. The image
segmentation is performed by assigning each image pixel
p to the class Ci having the highest density value:

fiðpÞ4 fjðpÞ, 8j 2 ½1,n�\fig

Then, the image segmentation is illustrated by replacing
the color value of the pixel p by the mean mi of the
Gaussian fi.

Given an input image, the first step of this experiment
was to estimate, using the Bregman soft clustering
algorithm, an initial mixture of Gaussians f of 32
components from the image pixels. Second, we simplified
f using the Bregman hard clustering into a mixture of
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Gaussians g of m components with m={1,2,4,8,16}.
More specifically, we simplified f with the right-sided,
left-sided, and symmetric Bregman hard clustering algo-
rithms. Fig. 3 shows the evolution of the simplification
quality as a function of m and for the three mentioned
Bregman hard clustering algorithms. The input images
were Baboon, Lena, Shantytown, and Colormap. The
simplification quality is given by the Kullback–Leibler
divergence DKL(f,g) estimated by a Monte-Carlo method.
Five thousand points were randomly drawn to estimate
DKL(f,g). The simplification quality increased (DKL(f,g)
decreased) with m whatever the Bregman divergence
used. Indeed, the quality of the approximation of the
initial mixture f increases with the number of Gaussians
in the simplified model g. Second, the left-sided Bregman
Fig. 4. Illustration of the mixture simplification using the left-sided Bregma

segmentation. The value m denotes the number of components in the simplifie

Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
divergence gave the best results and the right-sided the
worst. Indeed, estimating the left-sided Bregman divergence
on natural parameters amounts to estimate the right-sided
Kullback–Leibler divergence on distributions. Since the
simplification quality measure is the right-sided Kullback–
Leibler divergence, obtaining the best simplification with the
left-sided Bregman hard clustering was then the expected
behavior. The symmetric Bregman hard clustering provided
better results than the right-sided one but worse than the
left-sided one since it is computed from right-sided and left-
sided Bregman divergences and centroids.

Fig. 4 illustrates the mixture simplification, based on
the left-sided Bregman hard clustering, in the context of
image segmentation. The number of classes is, by
construction, equal to the number of components
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m in g. The visual quality of the image segmentation
(visual similarity with the input image) increases m.

Fig. 3 clearly indicates that, according to DKL(f,g), the
left-sided Bregman hard clustering is a more efficient
mixture simplification method than both the right-sided
and symmetric Bregman hard clusterings. However, one
can ask what is the influence of the method on the image
segmentation? Since there is no ground-truth on image
segmentation, we propose to use the classical PSNR6

measure between the initial image and the segmented
image to evaluate the segmentation quality. Fig. 5 shows
the evolution of this segmentation quality as a function of
m for the right-sided, left-sided, and symmetric Bregman
hard clustering algorithms. For the three natural images
116
6 Peak Signal-to-Noise Ratio.

Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
(Baboon, Lena, and Shantytown), it appears that,
according to the segmentation quality, the right-sided
and the symmetric Bregman hard clusterings provide a
better mixture simplification than the left-sided Bregman
hard clustering. Indeed, in the context of image
segmentation, it is natural to represent a set of
Gaussians by an encompassing Gaussian. As presented
in Section 2.3, the right-sided and the symmetric
centroids try to encompass the set of distributions while
the left-sided centroid is simply an average distribution.
Thus, the right-sided and the symmetric Bregman hard
clusterings are more adapted to image segmentation than
the left-sided Bregman hard clustering. The image
Colormap is a special case since it is, by definition, a
statistical image. In this case, the left-sided Bregman hard
clustering provides the best segmentation (and the right-
sided one the worst).
ation and hierarchical representations of mixtures of
ro.2010.05.024
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We conclude this experiment by studying the computa-
tion time of the proposed mixture simplification method.
The main goal of the mixture simplification algorithms is to
reduce the computation time by avoiding to recompute a
simpler mixture from the initial point set. Let S be a set of
5000 points in a five-dimensional space, and let f be a
mixture of 32 Gaussians estimated from S using the
Bregman soft clustering. The estimation of a simpler
mixture g of 10 components from S (soft clustering) is
performed in 138 s while the simplification of f using the
Bregman hard clustering is performed in 694 ms (200 times
faster). The speed-up depends on size of the point set, on the
mixture size, and on the dimension.

4.5. Mixture simplification: comparison with state of the art

Goldberger et al. proposed a fast mixture of Gaussians
simplification algorithm (cf. [13]) named UTAC (unscented
transform approximation clustering) based on the
unscented transform (UT) method (cf. [15,16]). The UTAC
algorithm proceeds by maximizing the UTA (unscented
transform approximation of the negative cross-entropy)
criterion computed between the initial mixture f and the
estimated mixture g. The authors show that the UTA
criterion can be maximized with a standard EM-like
algorithm. UTAC is, as far as we know, the most efficient
mixture simplification algorithm (yet) both in terms of
quality and computation time.

In this section, we compare the UTAC algorithm to the
proposed Bregman hard clustering for simplifying mixtures
of Gaussians. Given an input image, we learnt a mixture of
Gaussians f of 32 components as presented in Section 4.4.
The value 32 was arbitrary chosen: this value is large
enough to show the algorithm behavior and is small enough
to have fast computation. We then simplified f into a
simpler mixture of Gaussians using the algorithms UTAC
and left-sided Bregman hard clustering. Fig. 6 presents the
evolution of the simplification quality as a function of m
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Fig. 6. Evolution of the mixture simplification quality DKL(f,g) as a functio
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(number of Gaussians in the simplified mixture) for both
algorithms. The input images used for this experiment were
Baboon and Lena. The Bregman hard clustering and the
UTAC algorithms provided a simplified mixture of similar
quality. However, the Bregman hard clustering was faster
than the UTAC algorithm. For instance, let us consider a
mixture f of 100 Gaussians in a five-dimensional space, the
simplification into a mixture of 10 components is performed
in 6275 ms using UTAC and in 694 ms using the Bregman
hard clustering (9 times faster than UTAC). The speed-up
depends on the mixture size and on the dimension.
In both algorithms, the maximum number of iterations
was set to 30.

To summarize, the proposed Bregman hard clustering
provides a mixture simplification similar to the one
computed by the UTAC algorithm. However, the proposed
mixture simplification method is faster than UTAC, and is
generic as it applies to any mixture of exponential
families.

4.6. Hierarchical mixture model applied to image

segmentation

The Bregman hierarchical clustering (cf. Section 3.3)
allows first to simplify a mixture of exponential families,
and second to automatically learn the optimal number of
components in the mixture model. In this section, we
study the effect of the linkage criterion (Section 4.6.1) and
of the Bregman divergence type (Section 4.6.2) on the
simplification quality. Then, we compare the computation
time of the Bregman hard clustering and of the Bregman
hierarchical clustering to simplify a given mixture model.
Finally, we used the method described in Section 3.3 to
learn the optimal number of components in the mixture
model.

The initial mixture of Gaussians used in this section are
composed of 32 and are estimated form the images
Baboon, Lena, Shantytown and Colormap (cf. Section 4.4).
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4.6.1. Linkage criterion

Given an initial mixture f, we built three hierarchical
mixtures of Gaussians using the left-sided Bregman
hierarchical clustering, the three hierarchical mixtures
being, respectively, based on the minimum, the max-
imum, and the average distances as linkage criterion. We
deduced from these hierarchical mixtures three simplified
mixture models for different resolutions. Fig. 7 shows the
evolution of the simplification quality as a function of the
resolution and for the three hierarchical mixtures of
Gaussians. The maximum and average distances provided
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Fig. 7. Evolution of the simplification quality DKL(f,g) as a function of the

resolution. The linkage criteria used to built the hierarchical mixture

models are the minimum, the maximum, and the average distances.

5 10 15 20 25 30
0

5

10

15

Resolution

D
K

L(
f,g

)

Right–sided
Left–sided
Symmetric

Fig. 8. Evolution of the simplification quality DKL(f,g) as a function of the
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hard clustering algorithms.
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a better mixture simplification method (lower DKL(f,g))
than the minimum distance. Indeed, the maximum and
average distances are known to be more reliable and more
robust to outliers than the minimum distance. In the
paper remainder, we will use the maximum distance to
build any hierarchical mixture model.

4.6.2. Bregman divergence type

Given an initial mixture f, we built three hierarchical
mixture of Gaussians, respectively, using the right-sided, the
left-sided, and the symmetric Bregman hierarchical cluster-
ing. We deduced from these hierarchical mixtures three
simplified mixture models for different resolutions. Fig. 8
shows the evolution of the simplification quality as a
function of the resolution and for the three mentioned
Bregman hierarchical clustering algorithms. The simplifi-
cation quality increased (DKL(f,g) decreased) with resolution
whatever the Bregman divergence used. Moreover, the left-
sided Bregman hierarchical clustering is the most efficient
(in terms of quality) method and the right-sided one is the
worst one (see Section 4.4 for explanation). Fig. 9 illustrates
the mixture simplification, using the left-sided Bregman
hierarchical clustering, applied to image segmentation. The
visual quality of the image segmentation increases with the
resolution.

4.6.3. Computational time

By comparing Figs. 3 and 8, one can notice that the
simplification quality is similar using the Bregman hard
clustering and Bregman hierarchical clustering. However,
even if the mixture simplification process is fast using the
Bregman hard clustering, it is almost instantaneous using
Bregman hierarchical clustering. For instance, let us
consider a mixture f of 100 Gaussians in a five-dimen-
sional space, the simplification into a mixture of 10
components is performed in 694 ms using the Bregman
hard clustering and in 2 ms using the Bregman hierarch-
ical clustering. The construction of the hierarchical
mixture model (87 s in this experiment) has not been
taken into account since this process is usually done off-
line.

4.6.4. Learning of the optimal mixture model

In Section 3.3, we have presented a method to
automatically learn the optimal number of components
in a given mixture of exponential family. Given an initial
mixture of Gaussians f learnt from an input image, we
built a hierarchical mixture model h using the left-sided
Bregman hierarchical clustering. We set the constraint on
the minimum quality t¼ 0:2. Fig. 10 shows the evolution
of the simplification quality as a function of the number of
components m (i.e. resolution) and for the images Baboon,
Lena, Shantytown, and Colormap. We plotted on the same
figure the threshold t¼ 0:2 (magenta horizontal solid
line). The learning process provided a mixture of 10
components for Baboon, 14 components for Lena, 16 for
Shantytown, and 23 for Colormap (see Fig. 11).

The learning process is not a fast method since it is
based on a Monte-Carlo method. For instance, given a
mixture f of 100 Gaussians in a five-dimensional space,
the optimal mixture model is computed in 35 s: more
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Fig. 9. Bregman hierarchical clustering (left-sided) and application to image segmentation. The value m denotes the resolution which is equal to the

number of components in the simplified mixture. The maximum resolution contained 32 components (last row).
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than 99% of the computation time was used to esti-
mate the Kullback–Leibler divergence from 1000 sample
points.

To summarize this experiment, the Bregman hierarch-
ical clustering allowed to efficiently (quality and
computation time) simplify a given mixture of Gaussians
or a mixture of exponential families. Using the maximum
or the average distance as linkage criterion, the Bregman
hierarchical clustering provided a simplification quality
similar to the Bregman hard clustering. Finally, the
learning process seemed to be an efficient method
(in terms of quality) to retrieve the optimal number of
components in the simplified mixture model.
Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
5. Conclusion

The exponential family is a wide class of distributions
including, among others, Gaussian, Poisson, Laplacian,
binomial, multinomial, Bernoulli, and Rayleigh distribu-
tions. In this paper, we have presented three clustering
algorithms adapted to mixtures of exponential families:
the Bregman soft clustering, the Bregman hard clustering,
and the Bregman hierarchical clustering.

The Bregman soft clustering algorithm is the adapta-
tion of the expectation–maximization (EM) algorithm
allowing one to estimate the parameters of a mixture of
exponential families from a set of observation points. Our
ation and hierarchical representations of mixtures of
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t¼ 0:2.
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algorithm uses the most generic canonical form of
exponential families, and thus bypasses a technical
difficulty (i.e., degeneracy occur for some mixtures
including Gaussian mixtures in the work of Banerjee
et al. [6]). In particular, it has been shown that, using
this algorithm, an image can be represented (color
organization) by a compact mixture of Gaussians. Such a
statistical image representation could be very useful in
various applications such as color image retrieval.

The Bregman hard clustering algorithm is the
adaptation of the celebrated k-means algorithm to
the case of mixtures of exponential families, relying on
the fact that the relative entropy of members of the same
exponential family is equivalent to a corresponding
Bregman divergence. The proposed method is slightly
but importantly different from the original version (cf. [6])
since it is suitable to weighted distributions. Thus, by
considering a mixture of exponential families as a set of
weighted distributions, the Bregman hard clustering
appears to be a very efficient mixture simplification
algorithm. Indeed, this algorithm provides a similar
mixture simplification quality in a shorter computation
time than the state of the art UTAC algorithm (cf. [13]).

The Bregman hierarchical clustering algorithm is the
adaptation of the hierarchical clustering to the case of
mixtures of exponential families in the context of Bregman
divergences. This algorithm creates a hierarchical mixture
Please cite this article as: V. Garcia, F. Nielsen, Simplific
exponential families, Signal Process. (2010), doi:10.1016/j.sigp
model from an initial mixture of exponential families. This
hierarchical mixture model allows first to quickly compute a
compact version of the initial mixture, and second to
automatically learn the optimal number of components for
the simplified mixture.

Both Bregman hard clustering and Bregman hierarchical
clustering algorithms have been applied to mixture
simplification and clustering based image segmentation.

In this paper, we also have presented jMEF.7 jMEF is a
cross-platform open source JavaTM library designed to
create, process and manage mixtures of exponential
families. This library implements the Bregman soft
clustering, the Bregman hard clustering, and the Bregman
hierarchical clustering. The jMEF library is available
on-line at http://www.lix.polytechnique.fr/�nielsen/MEF
and is licensed under a MIT License.
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