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The Burbea-Rao and Bhattacharyya centroids
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Abstract—We study the centroid with respect to the class of
information-theoretic Burbea-Rao divergences that genalize the
celebrated Jensen-Shannon divergence by measuring the non
negative Jensen difference induced by a strictly convex and
differentiable function. Although those Burbea-Rao divegences
are symmetric by construction, they are not metric since thg
fail to satisfy the triangle inequality. We first explain how a
particular symmetrization of Bregman divergences called &énsen-
Bregman distances yields exactly those Burbea-Rao divengees.
We then proceed by defining skew Burbea-Rao divergences,
and show that skew Burbea-Rao divergences amount in limit
cases to compute Bregman divergences. We then prove that
Burbea-Rao centroids can be arbitrarily finely approximated by
a generic iterative concave-convex optimization algoritm with
guaranteed convergence property. In the second part of thegper,
we consider the Bhattacharyya distance that is commonly uskto
measure overlapping degree of probability distributions.We show
that Bhattacharyya distances on members of the same statisal
exponential family amount to calculate a Burbea-Rao divergnce
in disguise. Thus we get an efficient algorithm for computing
the Bhattacharyya centroid of a set of parametric distributions
belonging to the same exponential families, improving over
former specialized methods found in the literature that wee
limited to univariate or “diagonal” multivariate Gaussian s. To
illustrate the performance of our Bhattacharyya/Burbea-Rao
centroid algorithm, we present experimental performance esults
for k-means and hierarchical clustering methods of Gaussian
mixture models.

Index Terms—Centroid, Kullback-Leibler divergence, Jensen-
Shannon divergence, Burbea-Rao divergence, Bregman diver
gences, Exponential families, Bhattacharrya divergencelnfor-
mation geometry.

I. INTRODUCTION
A. Means and centroids

In Euclidean geometry, the centroidof a point setP =
{p1,...,ps} is defined as the center of magsy ", p;, also
characterized as the center point that minimizesaherage

n 1

squaredEuclidean distances: = argmin, .. | +||p — pi[|*.

This basic notion of Euclidean centroid can be extended to

denote ameanpoint M (P) representing theentrality of a

given point setP. There are basically two complementary
approaches to define mean values of numbers: (1) by ax-

iomatization, or (2) by optimization, summarized congisas$
follows:

o By axiomatization. This approach was first historically

pioneered by the independent work of Kolmogorov [1]
and Nagumo [2] in 1930, and simplified and refined later
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by Aczél [3]. Without loss of generality we consider
the mean of two non-negative numbers and x5, and
postulate the following expected behaviors of a mean
function M (21, 22) as axioms (common sense):
— Reflexivity. M (z,x) = z,
- Symmetry.M(xl, .’L‘g) = ]\/[(.”L'g, :vl),
— Continuity and strict monotonicityM (-, -) continu-
ous andM (zq,x2) < M (2}, z2) for 1 <z, and
— Anonymity. M(M(Ill,dflg),M(IQhSCQQ)) =
M(M(xll, IQl), M(Ilg, $22)) (alSO called
bisymmetry expressing the fact that the mean
can be computed as a mean on the row means or
equivalently as a mean on the column means).

Then one can show that the mean functidfy-,-) is
necessarily written as:

r1)+ f(@ def
Jle) + 2 2>) My (1, 1),
(1)

for a strictly increasing functioif. The arithmetic%,
geometric,/z172 and harmonic means—2— are in-

stances of such generalized means obtalineﬁ(f@} =z,

f(z) =logx and f(x) = % respectively. Those general-
ized means are also callegiasi-arithmetic meansince
they can be interpreted as the arithmetic mean on the se-
quencef(x1), ..., f(x,), the f-representation of numbers.
To get geometric centroids, we simply consider means
on each coordinate axis independently. The Euclidean
centroid is thus interpreted as the Euclidean arithmetic
mean. Barycenters (weighted centroids) are similarly
obtained using non-negative weights (normalized so that

Z?:l w; = 1):

M(xy,29) = f1 <

Mp(x1, ooy Tpy Wy ey Wy) = f (Z wif(%)) 2
i=1

Those generalized means satisfy the inequality property:
Me(z1, ooy T W1, ey Wy) < Mg(@1, ey T W1, oy Wy,

3)
if and only if functiong dominatesf: That is,Vz, g(z) >
f(x). Therefore the arithmetic mearf (i) = x) domi-
nates the geometric meayf(¢) = logx) which in turn
dominates the harmonic meaf(z) = 1. Note that it
is not a strict inequality in Eq. 3 as the means coincide
for all identical elements: if alk;; are equal toxr then
Mp(r,cnzn) = [TNf(@) = ¢ = g7(g(2)) =
Mgy (z1, ..., zp). All those quasi-arithmetic means further
satisfy the “interness” property
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min(xy, ..., zn) < My(x1, ..., 2,) < max(zy, ..., Tn),

(4)
derived from limit case® — oo of power meansfor
f(z) = aP,p € R, = (—o00,00)\{0}, a non-zero real
number.

By optimization. In this second alternative approach, the
barycenterc is defined according to a distance function

d(-,-) as the optimal solution of a minimization problem

(OPT) : mxinZwid(x,pi) = min L(z;P,d), (5)
1=1
where the non-negative weights; denote multiplicity

or relative importance of points (by default, the centroid
is defined by fixing allw;, = %). Ben-Tal et al. [4]
considered an information-theoretic class of distances
called f-divergences [5], [6]:

Iy(z,p) =pf <f—?> ; (6)

for a strictly convex differentiable functiofi(-) satisfying
f(1) = 0 and f’(1) = 0. Although thosef-divergences
were primarily investigated for probability measufese
can extend thef-divergence to positive measures. Since
program (OPT) isstrictly convexn z, it admits aunique
minimizer M (P; Iy) = argmin, L(x; P, If), termed the
entropic mearby Ben-Tal et al. [4]. Interestingly, those
entropic means are linear scale-invariant:

Nielsen and Nock [7] considered another class of
information-theoretic distortion measureBr called
Bregman divergences [8], [9]:

Brp(x,p) = F(x) — F(p) — (x —p)F'(p),  (8)

for a strictly convex differentiable functiof'. It follows
that (OPT) is convex, and admits a unique minimizer
M(p1,....pn; Br) = Mpi(p1, ..., pn), @ quasi-arithmetic
mean for the strictly increasing and continuous func-
tion F’, the derivative ofF’. Observe that information-
theoretic distances may be asymmetric (i&x,p) #
d(p,x)), and therefore one may also defineight-sided
centroid M’ as the minimizer of

(OPT'): min z": w;d(pi, ), 9)
i=1

It turns out that forf-divergences, we have:

It (z,p) = It«(p, 2), (10)

for f*(z) = xf(1/x) so that (OPT’) is solved as a (OPT)
problem for theconjugate functionf*(-). In the same
spirit, we have:

Bp(z,p) = Bp-(F'(p), F'(x))

for Bregman divergences, whef& denotes the Legendre
convex conjugate [8], [91.Surprisingly, although (OPT")
may not be convex inz for Bregman divergences (e.g.,
F(x) = —logx), (OPT’) admits nevertheless a unique
minimizer, independent of the generator functibnthe
center of masa/’(P; Br) = . | +p;. Bregman means
are not homogeneous except for the power generators
F(x) = 2P which yields entropic means, i.e. means
that canalso be interpretetias minimizers of averagg-
divergences [4]. Amari [11] further studied those power
means (known as-means in information geometry [12]),
and showed that they are linear-scale free means ob-
tained as minimizers ofv-divergences, a proper sub-
class of f-divergences. Nielsen and Nock [13] reported
an alternative simpler proof ofi--means by showing
that thea-divergences are Bregman divergences in dis-
guise (namely, representational Bregman divergences for
positive measures, but not for normalized distribution
measures [10]). To get geometric centroids, we simply
consider multivariate extensions of the optimization task
(OPT). In particular, one may consideeparabledi-
vergences that are divergences that can be assembled
coordinate-wise:

(11)

d

d(z,p) =Y _di(z),pW),

i=1

(12)

with z(? denoting theith coordinate. A typical non
separable divergence is the squared Mahalanobis dis-
tance [14]:

d(z,p) = (x—p)"Qz — p),

a Bregman divergence called generalized quadratic dis-
tance, defined for the generatéi(z) = 27 Qx, where

Q is a positive-definite matrix(§ = 0). For separable
distances, the optimization problem (OPT) may then be
reinterpreted as the task of finding the projection [15] of
a pointp (of dimensiond x n) to the upper lineU:

(13)

(PROJ) : 11615 d(u,p) (14)
with u; = ... = ugx, > 0, andp the (n x d)-dimensional
point obtained by stacking theé coordinates of each of
then points.

In geometry, means (centroids) play a crucial role in center
based clustering (i.ek-means [16] for vector quantization

applications). Indeed, the mean of a cluster allows one to

1Besides the min/max operators interpreted as extremal pmeans, the aggregate datanto a single center datum. Thus the notion

geometric mean itself can also be interpreted as a power ifjgan, «7)?
in the limit casep — 0.

4Legendre dual convex conjugatés and F* have necessarily reciprocal

2In that context, al-dimensional point is interpreted as a discrete and finitgradients:F*' = (F’)~1. See [7].

probability measure lying in théd — 1)-dimensional unit simplex.
3That is, means of homogeneous degtee

5In fact, Amari [10] proved that the intersection of the clask f-
divergences with the class of Bregman divergencesoadé/ergences.
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of means are encapsulated into the broader theory of matheAlthough the square root of the Jensen-Shannon diver-
matical aggregators [17]. gence yields a metric (a Hilbertian metric), it is not true
Results on geometric means can be easily transfered to ithegeneral for Burbea-Rao divergences. The closest work to
field of Statistics [4] by generalizing the optimization ptem our paper is al-page symposiufn paper [21] discussing
task to a random variabl& with distribution F' as: about Ali-Silvey-Csiszarf-divergences [5], [6] and Bregman
divergences [22], [8] (two entropy-based divergence elgss
Those information-theoretic distortion classes are caegha
(OPT) : min E[Xd(z, X)] = mzin/td(%t)dF(t)a (15) using quadratic differential metrics, mean values andeuroj
! tions. The notion of skew Jensen differences interveneén th
where E[-] denotes the expectation defined with respect Hiscussion.
the Lebesgue-Stieltjes integral. Although this approagh i
discussed in [4] and important for defining various notio

of centrality in statistics, we shall not cover this extetrhdgé ' Contrlbuu?ns énd pape.r organization ] )
framework here, for sake of brevity. The paper is articulated into two parts: The first part stsidie

the Burbea-Rao centroids, and the second part shows some
] applications in Statistics. We summarize our contribugias
B. Burbea-Rao divergences follows:

In this paper, we focus on 'Fhe optimiza_tion approach . We define the parametric class of (skew) Burbea-Rao
(OPT) for defining other (geometric) means using the class of divergences, and show that those divergences naturally
information-theoretic distances obtained by Jensen reiffee arise when generalizing the principle of the Jensen-
for a strictly convex and differentiable functiafi: Shannon divergence [20] to Jensen-Bregman divergences.

In the limit cases, we further prove that those skew
dof B_urbea-Rao divergences yield asymptotically Bregman
= BRp(z,p) 2 0. divergences.

(16) o We describe the centroids with respect to the (skew)

Since the underlying differential geometry implied by thos ~ Burbea-Rao divergences. Besides centroids for special
Jensen difference distances have been seminally studied in cases of Burbea-Rao divergences (including the squared
papers of Burbea and Rao [18], [19], we shall term them Euclidean distances), those centroids are not available

d(z,p) =

F(z)+ F(p) _F (a:+p
2 2

Burbea-Rao divergences, and point out to thenBRs-. In in closed-form equations. However, we show that any
the remainder, we consider separable Burbea-Rao diveegenc ~ Burbea-Rao centroid can be estimated efficiently using
That is, ford-dimensional points andg, we define an iterative convex-concave optimization procedure. As

a by-product, we find Bregman sided centroids [7] in
closed-form in the extremal skew cases.

We then consider applications of Burbea-Rao centroids in

) Statistics, and show the link with Bhattacharyya distanées
and study the Burbea-Rao centroids (and barycenters) as {iq cjass of statistical parametric models can be handied i

minimizers of the average Burbea-Rao divergences. Thagenified manner as exponential families [23]. The classes of
Burbea-Rao divergences generalize the celebrated Jenggii,nential families contain many of the standard pardmetr
Shannon divergence [20] models including the Poisson, Gaussian, multinomial, and
p+q H(p)+ H(q Gamma/Beta distributions, just to name a few prominent
JS(nq)—H( )— o) + Hlg)

d
BRr(p,q) = > BRe(p!”,q"), (17)
=1

9 9 (18)  members. However, only a few closed-form formulas for the

) ) statistical Bhattacharyya distances between those dEnaite
by choosingF(z) = —H(xz), the negative Shannon entropyeported in the literaturé.
H(z) = —wlogx. Generatorsi(-) of parametric distances For the second part, our contributions are reviewed as
are convex functions representing entropies which area@nc g |ows:
functions. Burbea-Rao divergences contain all genewdlize
quadratic distancesf{(z) = 27 Qz = (Qz,x) for a positive
definite matrix @ > 0, also called squared Mahalanobis

« We show that the (skew) Bhattacharyya distances calcu-
lated for distributions belonging to the same exponential
family in statistics, are equivalent to (skew) Burbea-

distances). Rao divergences. We mention corresponding closed-form
formula for computing Chernoff coefficients and-
BRr(p,q) — F(p) + F(q) Ja (p + q> divergences of exponential families. In the limit case, we
’ 2 2 obtain an alternative proof showing that the Kullback-
2(Qp,p) +2(Qq,q) — (Q(p+q),p+q) Leibler divergence of members of the same exponential

4 8In the nineties, the IEEE International Symposium on Infation Theory
((Qp,p> + <Qq7 q> — 2<Qp, q>) (ISIT) published only 1-page papers. We are grateful to Prof. Michele
Basseville for sending us the corresponding slides.
1 2 “For instance, the Bhattacharyya distance between miidtieamormal
<Q(p - q),p— CI> = Z”p - QHQ- distributions is given here [24].

S ]
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family is equivalent to a Bregman divergence calculated
on the natural parameters [14].

« We approximate iteratively the Bhattacharyya centroid of
any set of distributions of the same exponential family
(including multivariate Gaussians) using the Burbea-Rao
centroid algorithm. For the case of multivariate Gaus-
sians, we design yet another tailored iterative scheme
based on matrix differentials, generalizing the former
univariate study of Rigazio et al. [25]. Thus we get either
the generic way or the tailored way for computing the
Bhattacharrya centroids of arbitrary Gaussians.

« As a field application, we show how to simplify Gaus-
sian mixture models using hierarchical clustering, and

. ) ; P ptq q
show experimentally that the results obtained with the 2

Bhattacharyya centroids compare favorably well wit,hig. 1
former results obtained for Bregman centroids [26]. Oufistance between the midpoint of segméat, F(p)), (¢, F(g))] and the
numerical experiments show that the generic method outidpoint of the graph plo(PT“,F (‘%‘1))

performs the alternative tailored method for multivariate

Gaussians. F

Interpreting the Burbea-Rao diverge8& i (p, ¢) as the vertical

The paper is organized as follows: In section II, we intro-
duce Burbea-Rao divergences as a natural extension of the
Jensen-Shannon divergence using the framework of Bregman A
divergences. It is followed by Section Il which considers Br(p,q) = H, — H,,
the general case of skew divergences, and reveals asymp-
totic behaviors of extreme skew Burbea-Rao divergences as
Bregman divergences. Section IV defines the (skew) Burbea- ; .
Rao centroids, and present a simple iterative algorithnh wit q D
guaranteed convergence. We then consider applications in
Statistics in Section V: After briefly recalling exponemtiaFig. 2. Interpreting the Bregman divergenBe- (p, g) as the vertical distance
distributions in§V-A, we show that Bhattacharyya distance%‘ztm*gl‘ Stg‘:);gr}?g;t).p'a”e atand its translate passing through (with
and Chernoff/Amaria-divergences are available in closed-
form equations as Burbea-Rao divergences for distribation

of the same exponential families. Section V-C presents gfe not metrics since they fail to satisfy the triangle ireiy
alternative iterative algorithm tailored to compute theaBh A geometric interpretation of those divergences is given in
tacharyya centroid of multivariate Gaussians, generaithe Figyre 1. Note that” is defined up to an affine teran: -+ b.
former specialized work of Rigazio et al. [25]. In sectioDV- e show that Burbea-Rao divergences extend the Jensen-
we use those Bhattacharyya/Burbea-Rao centroids to $impkshannon divergence using the broader concept of Bregman
hierarchically Gaussian mixture models, and comment badiyergences instead of the Kullback-Leibler divergence. A
qualitatively and quantitatively our experiments on a col®regman divergence [22], [8], [98r is defined as the positive

image segmentation application. Finally, section VI cadels 5| of the first-order Taylor expansion of a strictly conaexd
this paper by describing further perspectives and hinting @ferentiable convex functiod

some information geometrical aspects of this work.

Br(p,q) = F(p) — F(q) —(p— ¢, VF(q)), (19)

where VF' denote the gradient of' (the vector of partial

derivatives{gTF}i), and (z,y) = 2Ty the inner product (dot

LetR* = [0, +o0) denote the set of non-negative reals. Fqjroduct for vectors). A Bregman divergence is interpreted
a strictly convex (and differentiable) generatby we define geometrically [14] as the vertical distance between thgean
the Burbea-Rao divergence as the following non-negatipjﬁme]{q at ¢ of the graph plotF = {2 = (z, F(z)) |z € X'}
function: and its translatesd passing throughpy = (p, F(p)). Fig-
ure 2 depicts graphically the geometric interpretation hef t
BRr : X xX—R* B_regman dlyergence (to be compared with the Burbea-Rao
F(p) + F(q) g divergence in Figure 1).
— - F <—> >0 Bregman divergences are never metrics, and symmetric
only for the generalized quadratic distances [14] obtaimgd
The non-negative property of those divergences follovehoosingF(z) = 27Qx, for some positive definite matrix
straightforwardly from Jensen inequality. Although Buabe @ >~ 0. Bregman divergences allow one to encapsulate both

Rao distances are symmetrBR (p, ¢) = BRr(q,p)), they statistical distances with geometric distances:

Il. BURBEA-RAO DIVERGENCES FROM SYMMETRIZATION
OF BREGMAN DIVERGENCES

(p7 Q) = BRF(p7 Q) =
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o Kullback-Leibler divergence obtained fo#'(x) = Nielsen and Nock [7] investigated the centroids with respec
xlog x: to Jeffreys-Bregman divergences (the symmetrized Kulkibac
. (i) Leibler divergence).
KL(p.q) = Y plog 2 0

- q®
=t Ill. SKEW BURBEA-RAO DIVERGENCES

, _ , s
» squared Euclidean distance obtained fofrr) = 2 We further generalize Burbea-Rao divergences by intro-

a _ ducing a positive weightv € (0,1) when averaging source
L(p,q) = Z(p(l) —¢"2 =|p—q||*> (21) parameterg andq as follows:
1=1
_ _ ~ BRY . xxx R
Basically, there are two ways to symmetrize Bregman di- (@)
vergences (see also work on Bregman metrization [27], {28FRr (p.q) = aF(p)+ (1 —a)F(q) — F(ap+ (1 — a)q)
« Jeffreys-Bregman divergencesWe consider half of the we consider the open intervdD, 1) since otherwise the
double-sided divergences: divergence has no discriminatory power (indeed, fore
{0,1}, BR}Q) (p,q) =0, V¥p, q). Although skewed divergences

Br(p,q) + Br(q,p) are asymmetricBR;?‘)(p,q) #* BR;?)(q,p), we can swap

Sr(piq) = D) (22) arguments by replacing by 1 — a:
1
= S5(P—a¢VF(p) - VF(q), (23)
’ BRI (p,q) = aF(p)+(1—0a)F(g) — Flap+ (1 - a)g)
Except for the generalized quadratic distances, this sym- ©* " (1—a)
metric distancecannot be interpreted as a Bregman = BRp “(a¢,p) (28)

divergence [14]. ) ) Those skew Burbea-Rao divergences are similarly found us-
- Jensen-Bregman divergencesie consider the Jeffreys-in a skew Jensen-Bregman counterpart (the gradient terms

Bregman divergences from the source parameters to t{; (ap + (1 — a)q) perfectly cancel in the sum of skew
average parametéi% as follows: Bregman divergences):

B b, bta + B q, rtq ef
Jepg) = ZEEEVEBR@T) Ghy aBe(pap+ (- a)) + (1 - ) Br(g.ap+ (1 - a)g)
(@)
F(p)+ F(q p+yq BRy" (p.q)
- HAF@ g2t g -
Note that even for the negative Shannon entréfiy) = In the limit casesqe — 0 or av — 1, we havdSRﬁ?‘) (p,q) —

rlogx — z (extended to positive measures), those two syr-vp, q. That is, those divergences loose their discriminatory
metrizations yield different divergences: Whilg- uses the power at extremities. However, we show that those skew
gradientVF, Jp relies only on the generataf. Both Jr  Burbea-Rao divergences temdymptoticallyto Bregman di-
and Sp have always finite valuésThe first symmetrization vergences:

approach was historically studied by Jeffreys [29].

The second way to symmetrize Bregman divergences gen- 1w
eralizes the spirit of the Jensen-Shannon divergence [20] Br(p,q) = lm —BRp"(p.q) (29)
N (@)
.0) = 5 (K0 (5 250 ) ke (4. 221 )25y Brlgp) = lm—BRW(pq) (30
_ y(? +q H(p)+ H(q) 26 The Ii_mit in the right-ha_nd-side 01_‘ Eq. 30_can be expressed
- 2 - 2 (26) alternatively as the following one-sided limit:

with non-negativity that can be derived from Jensen’s in- 1 (@) o o)
equality, hence its name. The Jensen-Shannon divergence is 01?11 1- aBRF (p.q) = 2?& aBRF (9. p); (31)
also called the tOt,aI divergence to _the average, a gel"e‘da"%vhere the arrowg and ] denote the limit from the left and
measure of diversity from thgopulation distributiong andg the limit from the right, respectively (see [30] for notats).

to the average population”;r—q. Those Jensen difference—type]-he riaht derivative of a functiorf atz is defined as’’ _
divergences are by definition Burbea-Rao divergences.heor E gf(y)_f(w) A ate ¥+ (@)

. (0) o .
Shannon entropy, those two different information diveigen Myl - SinceBR " (p, ¢) = 0 ¥p, ¢, it follows that

symmetrizations (Jensen-Shannon divergence and Jetﬁey%?e right-ﬁaﬁd-side limit qf Eq. 31 1s thg right derivatieee .
divergence) satisfy the following inequality: heorem 1 of [30] that gives a generalized Taylor expansion

of convex functions) of the map
J(p.q) > 4 JS(p.q) > 0. (27) )
L(a) : a— BR;(¢q,p) (32)
8This may not be the case of Bregman/Kullback-Leibler dieerps that
can potentially be unbounded. taken ato = 0. Thus we have
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(say, the barycentefy = Y. | w;p;), and iteratively update

Eﬁ} éBRﬁf‘)(q,p) =L (0)., (33) the barycenter as follows:
with X .
VF(c41) = = ZwiaiVF (e + (1 — a)pi)
/ dy iy Witki =
L) = o(aF(g) + (1~ a)F(p) — Flag+ (1 - a)p)) (40)
= F(q) = F(p) = (¢ —p, VF(p)) (34) 1 1 S
=VF = i VE (aier + (1 — ai)pi
= Br(g,p) (35) " D i Wilki ;w Vit (= aon)

Lemma 1:Skew Burbea-Rao divergences tend asymptoti-

cally to Bregman divergences:(— 0) or reverse Bregman
divergencesd — 1).

Thus we may scale skew Burbea-Rao divergences so th
Bregman divergences belong to skew Burbea-Rao divergencee

sBRi (p.9)
1

all —a)

(aF'(p) + (1= a)F(q) — Fap+ (1 — a)q))
(36)

Moreover, « is now not anymore restricted t@®, 1) but

to the full real line:aw € R, as also noticed in [31]. Setting, i, weightsuw;

a =122 (thatis,a’ = 1 - 2a), we get

sBRy (p, )
1—do

14+do

(41)

Since F is convex, the second-order derivati%e’F is
always positive definite, and&/F' is strictly monotone in-
[,ﬁasing. Thus we can interpret Eq. 41 as a fixed-point
osuation by considering thHé F-representation. Each iteration
IS Interpreted as a quasi-arithmetic mean. This provestiigat
Burbea-Rao centroid is always well-defined. There is (attjnos
a unique fixed point for: = g(x) with a functiong(-) strictly
monotone increasing.

In some cases, like the squared Euclidean distance (or
squared Mahalanobis distances), we find closed-form salsiti
for the Burbea-Rao barycenters. For example, consider the
(negative) quadratic entropy(z) = (z,2) = S ¢, (¢()?
and alla; % (non-skew symmetric Burbea-
Rao divergences). We have:

F(x)

(42)

IV. BURBEA-RAO CENTROIDS

Let P = {p1,...,pn} denote ad-dimensional point set.
To each point, let us further associate a positive weight
(accounting for arbitrary multiplicity) and a positive $&a
a; € (0,1) to define an anchored distancBR;f”)(-,pi).
Define the skew Burbea-Rao barycenter (or centroid} the
minimizer of the following optimization task:

OPT : ¢ = argmin ZwiBR?i)(x,pi) = argmin L(x)

i=1
’ (38)
Without loss of generality, we consider argumenon the
left argument position (otherwise, we changenall» 1—a; to

. _ B S wF [P
- q))mlnE(I) = ; zF( 5 )a
437)1111&@ — %Zwl ((z, ) 4+ 2(z, p;) + (pis Di))
i=1

The minimum is obtained when the gradieWE (z) = 0,
that is whenz = p = Y7, w;p;, the barycenter of the point
setP. For most Burbea-Rao divergences, Eq. 42 can only be
solved numerically.

Observe that for extremal skew cases (for+ 0 or o — 1),
we obtain the Bregman centroids in closed-form solutioas (s
Eq. 30). Thus skew Burbea-Rao centroids allow one to get a
smooth transition from the right-sided centroid (the ceiwte
mass) to the left-sided centroid (a quasi-arithmetic mégn
obtained forf = VF, a continuous and strictly increasing
function).

Theorem 1:Skew Burbea-Rao centroids can be estimated
iteratively using the CCCP iterative algorithm. In extréma

get the right-sided Burbea-Rao centroid). Removing afh&r skew cases, the Burbea-Rao centroids tend to Bregman
independent ofc, the minimization program (OPT) amounteft/right sided centroids, and have closed-form equatin

to minimize equivalently the following energy function:

E(c) = (Z wia;)F(e) = > wiF(oie+ (1 - ai)p;) (39)

i=1

limit cases.

To describe the orbit of Burbea-Rao centroids linking the
left to right sided Bregman centroids, we compute fore
[0, 1] the skew Burbea-Rao centroids with the following update
scheme:

Observe that the energy function is decomposable in the

sum of a convex functiortd ", w;a;)F(c) with a concave
function — "7 | w; F(aic + (1 — oy)p;) (since the sum of,

concave functions is concave). We can thus solve itergtivel

Cty1 = VF~! (i w; VEF(ae, + (1 — a)pi)> (43)

i=1

this optimization problem using the Convex-ConCave Proce-

dure [32], [33] (CCCP), by starting from an initial positiog

We may further consider various convex generatgr$or
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each point, and consider the updating scheme without any loss all information about the parameterarried
in the iid. observationg, z2, ..., . The inner productp, ¢) is
ﬁfined according to the primitive type 6f Namely, it is a

-1 n
<Z inFZ-) (Z; ZwiaiVFi(aiCt + (1 — ay)p;Multiplication (p, ¢) = pq for scalars, a dot produgp, ¢) =

Ct+1 =

n

i=1 Wilki S pl'q for vectors, a matrix trac&, ¢) = tr(p? xq) = tr(pxq’)

for matrices, etc. For composite types suctpdming defined

by both a vector part and a matrix part, the composite inner
A. Burbea-Rao divergences of a population productis defined as the sum of inner products on the prieitiv

Consider now the Burbea-Rao divergence of a populfyPes. Finallyk(z) represents the carrier measure according to
tion p1,...,p, With respective positive normalized weightdh€ counting or Lebesgue measures. Decompositions for most
w, ..., w,. The Burbea-Rao divergence is defined by: common exponential family distributions are given in [23].

An exponential familyér = {pr(z;0) |0 € ©} is the set of
n n probability distributions obtained for the same log-nolizex

BRY(p1, ..., pn) = ZwiF(pi) _ F(Z wip;) >0 (44) function F'. Information geometry conside&- as a manifold

=1 =1 entity, and study its differential geometric propertieg][1

This family of diversity measures includes the Jensen- For example, consider the family of Poisson distributions

Renyi divergences [34], [35] foF(z) = —R.(z), where ©F With mass function:
Ra(z) = 1 log Z?le;* is the Rényi entropy of orded. AT
(Rényi entropy is concave far € (0,1) and tend to Shannon p(z;A) = g exp(—=A), (47)

entropy fora: = 1.) for € Ny = NU{0} a positive integer. Poisson distributions

are univariate exponential familiest (¢ Ny) of order 1
(parameter\). The canonical decomposition yields

. . . i « the sufficient statisti¢(z) = z,
We first briefly recall the versatile class of exponential fam |, _ log \, the natural parameter,

ily distributions in Section V-A. Then we show in Section V-B F(0) = exp¥, the log-normalizer
that the statistical Bhattacharyya/Chernoff distancesvéen | anqj(y) — - log 2! the carrier measure (with respect to
exponential family distributions amount to compute a Barbe the counting measure).

Rao divergence. Since we deal with applications using multivariate nor-
mals in the following, we also report explicitly that canon-
A. Exponential family distribution in Statistics ical decomposition for the multivariate Gaussian family
Many usual statistical parametric distributiong:; \) (e.g., {pr(z;0) |6 € ©}. We rewrite the usual Gaussian density
Gaussian, Poisson, Bernoulli/multinomial, Gamma/Bete.) e of meany and variance-covariance matrix
share common properties arising from their common canbnica
decomposition of probability distribution [9]:

V. BHATTACHARYYA DISTANCES AS BURBEA-RAO
DISTANCES

p(z; ) = plz;p,X) (48)
_ 1 _(x_M)TE_l(x_lu))/ 9)
P ) = pr(a:60) = exp ((t(x), 6) — F(0) + k(x) . (45) = s P > (

Those distributionsare said to belong to the exponential in the canonical form of Eq. 45 with,
families (see [23] for a tutorial). An exponential family is , g — (S, 387 € © = R? x Ky, With Kgxq
characterized by ittog-normalizerF'(6), and a distribution in denotes the cone of positive definite matrices,
that family by itsnatural parametef) belonging to thenatural e F(0) = 1tr(6510,07) — Llogdet 65 + Llog,
spaceO. The log-normalizef is strictly convex and’>°, and o t(z) = (x,—2Tx),
can also be expressed using the source coordinate system , k(z) = 0.
using the 1-to-1 map : A — © that converts parameters
from the source coordinate systerrto the natural coordinate

systemo:

In this case, the inner product is composite and is caladilate
as the sum of a dot product and a matrix trace as follows:

(0,0"y = 070 +tr(63 05). (50)

F(0) = P(r(N) = (For)(}) = FA(V), (46)  The coordinate transformation: A — © is given for\ =

where F, = F o 7 denotes the log-normalizer function(y,X) by

expressed using tha-coordinates instead of the natur 1

coordinates. T(\) = </\21)\1, _)\21) , (51)
The vectort(z) denote thesufficient statisticsthat is the 2

set of linear independent functions that allows to conegetr and its inverse mapping™' : © — A by

9The distributions can either be discrete or continuous. Weat introduce . 1.4 1,4
the unifying framework of probability measures in order tt burden the T (0) = 592 01, 592 . (52)
paper.
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B. Bhattacharyya/Chernoff coefficients anedivergences as defined for somex € (0,1) (the Bhattacharyya divergence
skew Burbea-Rao divergences is obtained fora = 1), where E[-] denote the expec-

For arbitrary probability distributiong(z) andg(z) (para- tation, and L(z) = % the likelihood ratio. The term
metric or not), we measure the amount of overlap betwegpp®(z)q'~*(x)dz is called the Chernoff coefficient. The
those distributions using the Bhattacharyya coefficie6{:[3 Bhattacharyya/Chernoff distance of members of the same

exponential family yields a weighted asymmetric Burbe@Ra

Cp,q) = / /p(x)q(z)dz, (53) divergence (namely, akewBurbea-Rao divergence):
Clearly, the Bhattacharyya coefficient (measuring the iaffin By (pr(x;0,),pr(x;04)) = BR;")(OZ,, 04) (61)
between distributions [37]) falls in the unit range: with
< <1. a
=cpa =t G BRI (6,.0,) = 0P (6,) + (1) F(0) ~ (b, +(1-a)d)
In fact, we may interpret this coefficient geometrically lmne (62)

sideringy/p(z) and+/q(z) as unit vectors. The Bhattacharyya Chernoff coefficients are also related dedivergences, the
distance is then the dot product, representing the cosinecahonical divergences in-flat spaces in information geome-
the angle made by the two unit vectors. The Bhattacharyy® [12] (p. 57):

distanceB : X x X — R is derived from its coefficient [36]

as o (1= [ p@) 2 a(@) 5 de) a1,
Da(plla) =9 [ p(x)log 2) 4z = KL(p, q) a=-1

B(p,q) = —InC(p,q). 55 i& o ’

(p,q) nC(p,q) (55) [ Zﬁj dz = KL(q.p), a1

The Bhattacharyya distance allows one to beth upper (63)
and lower bound the Bayes’ classification error [38], [39],
while there are no such results for the symmetric Kullback- The class ofa-divergences satisfy the following reference
Leibler divergence. Both the Bhattacharyya distance aed #uality: Do (pllq) = D—a(g||p). Remappingy’ = 152 (o =
symmetric Kullback-Leibler divergence agrees with thenBis 1 — 2’), we transform Amarin-divergences to Chernott’-
information at the infinitesimal level. Although the Bhatdivergences!
tacharyya distance is symmetric, it is not a metric. Newerth
less, it can be metrized by transforming it into to the folilogy _ 1 (1 - fp(x)a’q(x)lfa’dx) . o ¢1{0,1),

. . i a’(1—a’)
Hellinger metric [40]: Dur(p.g) =3 [ p(x)log 52:; dz = KL(p, q), o =1,
[ a(z)log £2dz = KL(q, p), o =0,

p(x)

H(p,q) = \/% /(\/p(:v) —Vaq(x))?dz,  (56) (64)

Theorem 2:The Chernoff o/-divergence ¢ # +1) of
distributions belonging to the same exponential family is
given in closed-form by means of a skewed Burbea-Rao

H(p,q) = divergence asD, (p, q) = ﬁ(l — e*BR%/("Pv"q)), with

(/ syt + [ gado 2 Mmdw) BRL (6. 00) = (@F(6y) — (1~ @)F(By)) — Floby -

1 — «)f,). Amari a-divergence for members of the same
= V1-Cba) (57) (132)
7BRF 2 (‘9?19’-}))

exponential families amount to computg, (p, ¢) = (1—
Hellinger metric is also called Matusita metric [37] in the We get
literature. The thesis of Hellinger was emphasized in thEkWOdistances:
of Kakutani [41].
We consider a direct generalization of Bhattacharyya co
ficients and divergences called Chernoff divergettes

such thatd < H(p, ¢) < 1. It follows that

|~
—

_4
1—a?

—_

the following theorem for Bhattacharyya/Chernoff
Theorem 3:The  skew  Bhattacharyya  divergence

eé'a(p,q) is equivalent to the Burbea-Rao divergence
for members of the same exponential family

&rt Balpg) = Ba (pF(w(; 9)p),pF(w; b)) =
B.(p,q) = —ln/po‘(x)qlfa(:zr)dzc = —InC,(p,¢58) —log Ca(_pF(QEQHp)apF(rT?Hq)) = BRp (91,,9(1_) 2 O-_
P In particular, forae = +1, the Kullback-Leibler divergence
_ —ln/ o(2) (péﬂ?) de (59) of those exponential family distributions amount to congput
@ qax 1" - L o
- @ Chernoff coefficients are also related to Rénydivergence generalizing
= —InE,[L%(z)] (60)  the Kullback-Leibler divergenceR (pllq) = =15 log [, p(z)*¢* =% (z)dz

) . . ) _ built on Rényi entropyH%(p) = 2 log([, p®(z)dz — 1). The Tsallis
0n  the literature, Chernoff information is also defined arN 1 B dra 5 . o
as —loginfepo,1] [ p¥(x)q! ™~ (x)da. Similarly, Chernoff  ENTOPYH £ (p) = ﬁ(l_fp(x) dz) can also be otitame(lj fron;ir:e)Renw
coefficients Cu(p,q) are defined as the supremunC,(p,q) = €ntropy (and vice-versa) via the mappindsy (p) = m(e( —HE(P) —
SUPaefo,1) J P (2)g % (z)da. 1) and H(p) = 1 log(1 + (1 — o) HE(p)).
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Let us compute the Chernoff coefficient for distribution$obging to the same exponential families. Without loss afegality,

let us consider the reduced canonical form of exponentialli@s pr(x; ) = exp(z, §) — F(#). Chernoff coefficient&, (p, q)
of memberyp = pr(z;6,) andq = pr(z;0,) of the sameexponential familyEg:

Calpq) = /po‘(w)ql‘“(:v)dw = /p?)(wﬂp)p?a(w;@q)dw
= [ explal(e.8) ~ F(6,))) x exp(1 -~ a)((z,6,) ~ F(6,)))do
= [ e (@0t + (1= a)8,) ~ (@F(6,) + (1~ )F(6,) ds
= exp—(aF(8,) + (1 - a)F(8,)) x /eXp ((x, 08, + (1 — a)8y) — F(af, + (1 — a)f,) + F(ab, + (1 — a)8,)) do
= exp(F(af, + (1 — a)f,) — (aF(6,) + (1 — a)F(6,)) x /exp(w, ab, + (1 — a)f,) — F(af, + (1 — a)8,)dz

= €Xp (F(oz@p +(1— O‘)eq) - (O‘F(ep) +(1 - O‘)F(eq)) X /pF(IQ abd, + (1- oz)t?q)dx

=1
= exp(—BRY(6,,6,)) > 0.

a Bregman divergencfl4] (by taking the limit asae — 1 or In order to compare this scheme on multivariate data with
a — 0). our generic Burbea-Rao scheme, we extend the approach of
Corollary 1: In the Ilimit case o’ € {0,1}, the /- Rigazio et al. [42] to multivariate Gaussians. Plugging the
divergences amount to compute a Kullback-Leibler diveBhattacharyya distance of Gaussians in the energy function

gence, and is equivalent to compute a Bregman divergeradehe optimization problem (OPT), we get

for the log-normalized on the swapped natural parameters: "1 o (S 43\
KL(pr (2:6,),pr (x:0,)) = Br(0,,6,). 1O = gl (52 e
Proof: The proof relies on the equivalence of Burbea- i=1
Rao divergences to Bregman divergences for extremal values 1 det (%)
of a € {0,1}. T3 log T des | (69)
This is equivalent to minimize the following energy:
KL(p,q) = KL(pr(z;0p),pr(z;0,)) (65) n
= lim Do (pr(z;0,), pr(w;6,)) (66) Fle) = Y (pe—pm)" (Se+30)7" (e — )
1 =1
= limlm(l — Co(pr(x;0p),pr(z;04))) + 2log(det(X. 4 3;)) —log (det )
o= - 2d
since exp ry~ol4x - log (2 det 21) . (70)
. 1 o In order to minimizeF(c), let us differentiate with respect to
= ——— BR%(0,,0 6 ' ) O -
o o (1—a) ¥ (0, 0) (67) Lic. let U; denote(S. + %;) . Using matrix differentials [43]
. (1=a’)Br(04,0p) (p-10 Eqg. 73), we get:
= lim —Bp(0,,0,) = Bp(0,,0 68 oL &
a}inl o F( q p) F( q p) ( ) 5 _ Z [Ui + UZT‘} [Mc . Mz‘] (71)
Similarly, we havelim, o Do (pr(z;6,), pr(x;04)) = He i3
KL(pr(z;64), pr(x;6p)) = Br(6p,0,). m Then one can estimate iteratively., sinceU; depends on

Table | reports the Bhattacharyya distances for members2ef Which is unknown. We updatg. as follows:
the same exponential families. -1

n

Z[Ui‘FUiT]

=1

n

Z[Uz‘-l-UﬂHi

i=1

pe(t+1) = (72)

C. Direct method for calculating the Bhattacharyya cerdeoi
of multivariate normals Now let us estimaté&.. We used matrix differentials [43] (p.9

To the best of our knowledge, the Bhattacharyya centrol?oq' 55 for the first term, and Eq. 51 p.8 for the two others):

has only been studied for univariate Gaussian or diagonal oL " T T
multivariate Gaussian distributions [42] in the context of oy, | L i (e — 1) (pte — pa)
speech recognition, where it is reported that it can be es#ich ZZln "

using an iterative algorithm (no convergence guarantees ar 22 Ul - ZEJT' (73)
reported in [42]). P P

Ur

2

+
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Exponential family T:AN—0 F(0) (up to a constant) Bhattacharyya/Burbea-RBB r (Ap, Aq) = BRp(7(Ap), 7(Aq))
Multinomial (log ;%)’i log(1 + Zf;ll exp 6;) L /Pid
Poisson log A exp 6 %( [Ty — \/Tiq)? .
. 02 — 2 or+o
Gaussian (01 = p, 02 = %) — 1, + 3 loe(= 7)) U g g
Zp+X
L . _ _ _ o435, L det =214
Multivariate Gaussian (6 = X714, 0 = 1571)  1tr(©71007) — Jlogdet ® L (pp — pg)? (%) (tp — pg) + 3 1In Jets, s,
TABLE |
CLOSED-FORMBHATTACHARY YA DISTANCES FOR SOME CLASSES OF EXPONENTIAL FAM.IES (EXPRESSED IN SOURCE PARAMETERS FOR EASE OF
USE)).

Taken into account the fact that. is symmetric, differential
calculus on symmetric matrices can be simply estimate:

The second experiment focuses on characterizing the nu-
merical convergence of the generic Burbea-Rao method com-
pared to the tailored Gaussian method. Since we presented

T
dL - oL + [8L ] — diag < oL > ) (74) two novel different schemes to compute the Bhattacharyya
d¥. 0% [0%. % centroids of multivariate Gaussians, one wants to compare
Thus, if one notes them, both in terms of stability and accuracy. Whenever the
n ratio of Bhattacharyya distance energy function betweesgh
A= Z 2UT — UT (pe — i) (pe — ps) " UL (75) estimated centroids is greater tha#, we consider that one
Py of the two estimation methods is beaten (namely, the method
and recalling thal, is symmetric, one has to solve that giyes the highest Bhattacharyya distance). Amongthe
centroids computed to generate Figures®)% were correct
n(28;1 — diag(2;1)) = A + AT — diag(A). (76) with the Burbea-Rao approach, while ord§% were correct
with the tailored multivariate Gaussian matrix optimipati
Let method. The average number of iterations to reachitfie
B=A+ A" — diag(4) (77) accuracy ist.1 for the Burbea-Rao estimation algorithm, and
Then one can estimatg, iteratively as follows: 5.2 for the aIternat.lve method. i
Thus we experimentally checked that the generic CCCP
Engrl) — [(B(’“) +diag(B(k)))}71 (78) iterative Burbea-Rao algorithm described for computing th

Bhattacharrya centroids always converge, and moreoves bea
Let us now compare the two generic Burbea-Rao/tailor@shotherad-hociterative method tailored for multivariate Gaus-

Gaussian methods for computing the Bhattacharyya cestrogians.

on multvariate Gaussians.

VI. CONCLUDING REMARKS

In this paper, we have shown that the Bhattacharrya distance

S . . L . for distributions of the same statistical exponential fizggsi
Simplifying Gaussian mixtures is important in many appli- . .

. C 2 T . . .2 .7 can be computed equivalently as a Burbea-Rao divergence
cations arising in signal processing [26]. Mixture simpkfi

T . .on the corresponding natural parameters. Those results ex-
tion is also a crucial step when one wants to study the Rig- . .
. . ) ; tend to skew Chernoff coefficients (and Amardivergences)

mannian geometry induced by the Rao distance with respect . . .
) - ; and skew Bhattacharyya distances using the notion of skew
to the Fisher metric: The set of mixture models need to haye .
urbea-Rao divergences. We proved that (skew) Burbea-

the same number of components, so that we simplify SOUIEE0 centroids can be efficiently estimated using an itexativ

mixtures to get a set of Gaussian mixtures with prescrib%oncave—convex rocedure with guaranteed convergence. We
size. We adapt the hierarchical clustering algorithm ofdzar P 9 9 '

et al. [26] by replacing the symmetrized Bregman CentrOIr(1];atve shown that extremally skewed Burbea-Rao divergences

(namely, the Jeffreys-Bregman centroid) by the Bhattaglzaar amount asymp totically to evalua_lte Bregman dlverge_nc_es Th
. ’ . .work emphasizes on the attractiveness of exponential ifzsnil
centroid. We consider the task of color image segmentation

. ; . . I Statistics. Indeed, it turns out that for many statidtica
by learning a Gaussian mixture model for each image. Eag :
. . . Istances, one can evaluate them in closed-form. For sake of
image is represented as a setsdb points (colorRGB and

e brevity, we have not mentioned the recéhtlivergences and
positionzy).

The first experimental results depicted in Figure 3 demo%dlvergences [44], although their distances on exponkntia

- . . milies are again available in closed-form.
strates thegualitative stabilityof the clustering performance. . . . . .
. ) . . . The differential Riemannian geometry induced by the class
In particular, the hierarchical clustering with respectthe

; e of such Jensen difference measures was studied by Burbea
Bhattacharrya distance performs qualitatively much beite : S : .
: 12 and Rao [18], [19] who built quadratic differential metrics
the lastcol or map image-

on probability spaces using Jensen differences. The Jensen
Shannon divergence is also an instance of a broad class of
divergences called thg-divergences. Af-divergencel; is a

D. Applications to mixture simplification in statistics

12gee reference images and segmentation using Bregmanidsratdttp:
/Iwww.informationgeometry.org/MEF/
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Fig. 3. Color image segmentation results: (a) source imgpgsegmentation witlk = 48 5D Gaussians, and (c) segmentation with= 16 5D Gaussians.

statistical measure of dissimilarity defined by the funaéibb Computer Science Laboratories, Inc. We are very grateful to

It(p,q) = fp(x)f(%)dx. It turns out that the Jensen-the reviewers for their thorough and thoughtful comments an

Shannon divergence is &divergence for the generator suggestions. In particular, we are thankful to the anonysnou
Referee that pointed out a rigorous proof of Lemma 1.

r+1

f(@) =1 ((w 1) log
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