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Means and centroids

In Euclidean geometry, centroid c of a point set P = {p1, ..., pn}:
Center of mass (also known as center of gravity):

1

n

n∑

i=1

pi

Unique minimizer of average squared Euclidean distances

c = argmin
p

n∑

i=1

1

n
‖p− pi‖2.

Two major ways to define means:

by axiomatization, or

by optimization
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Means by axiomatization

Axioms for mean function M(x1, x2):

Reflexivity. M(x, x) = x,

Symmetry. M(x1, x2) = M(x2, x1),

Continuity and strict monotonicity. M(·, ·) continuous and
M(x1, x2) < M(x′

1, x2) for x1 < x′

1, and

Anonymity.
M(M(x11, x12),M(x21, x22)) = M(M(x11, x21),M(x12, x22))

x11 x12

x21 x22

Yields unique function f (up to an additive constant):

M(x1, x2) = f−1

(
f(x1) + f(x2)

2

)
equal
= Mf (x1, x2)

f : continuous, strictly monotonous and increasing function.
(1930: Kolmogorov, Nagumo, + Aczél 1966)
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Means by axiomatization: Quasi-arithmetic means

arithmetic mean x1+x2

2 ←− f(x) = x

geometric mean
√
x1x2 ←− f(x) = log x

harmonic mean 2
1
x1

+ 1
x2

←− f(x) = 1
x

Arithmetic barycenter on the f -representation (y = f(x)) :

Mf (x1, ..., xn;w1, ..., wn) = f−1

(
n∑

i=1

wif(xi) = x̄

)

f(x̄) =
n∑

i=1

wif(xi)

ȳ =
n∑

i=1

wiyi
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Dominance and interness of means

Dominance property:
Mf (x1, ..., xn;w1, ..., wn) < Mg(x1, ..., xn;w1, ..., wn),

if and only if g dominates f : ∀x, g(x) > f(x).
Interness property:

min(x1, ..., xn) ≤Mf (x1, ..., xn) ≤ max(x1, ..., xn),

limit cases p→ ±∞ of power means for f(x) = xp, p ∈ R∗.

Mp(x1, ..., xn) = (
∑n

i=1wix
p
i )

1
p

name of power mean value of p

maximum → +∞
quadratic mean 2

arithmetic mean 1

geometric mean → 0

harmonic mean → −1
minimum → −∞

also called Hölder means.
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Means by optimization

(OPT) : min
x

n∑

i=1

wid(x, pi) = min
x

L(x;P , d),

Entropic means (Ben-Tal et al., 1989)

If (x, p) = pf

(
x

p

)

,

f(·): strictly convex differentiable function with f(1) = 0 and f ′(1) = 0.
entropic means: linear scale-invariant (homogeneous degree 1):

M(λp1, ..., λpn; If ) = λM(p1, ..., pn; If )
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Bregman means

BF (x, p) = F (x)− F (p)− (x− p)F ′(p),

F (·): strictly convex and differentiable function.
(OPT) is convex→ admits a unique minimizer:

M(p1, ..., pn;BF ) = MF ′(p1, ..., pn) = F ′−1

(
n∑

i=1

wiF
′(pi)

)

quasi-arithmetic mean for F ′, the derivative of F .

Since d(x, p) 6= d(p, x), define a right-sided centroid M ′

(OPT′) : min
x

n∑

i=1

wid(pi, x),
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Information-theoretic sided means

Reference duality

f -divergences
If (x, p) = If∗(p, x),

for f∗(x) = xf(1/x).
Any f -divergence can be symmetrized and stay in the class

Bregman divergences

BF (x, p) = BF∗(F ′(p), F ′(x))

for F ∗(·) the Legendre convex conjugate (F ∗′ = (F ′)−1)
Only the squared Mahanalobis distances are symmetric Bregman
divergences
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Separable divergence and means as projections

Separable divergence:

d(x, p) =

d∑

i=1

di(x
(i), p(i)),

with x(i) denoting the i-th coordinate, and di’s univariate divergences.
Typical non separable divergence : squared Mahalanobis distance (or
other matrix trace divergences)

d(x, p) = (x− p)TQ(x− p)

View means of separable divergence as a projection

(PROJ) : inf
u∈U

d(u, p)

with u1 = ... = ud×n > 0, and p the (n× d)-dimensional point obtained by
stacking the d coordinates of each of the n points.
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Burbea-Rao divergences

Based on Jensen’s inequality for a convex function F :

d(x, p) =
F (x) + F (p)

2
− F

(
x+ p

2

)
equal
= BRF (x, p) ≥ 0.

strictly convex function F (·).

BRF (p, q) =
d∑

i=1

BRF (p
(i), q(i)),

Includes the special case of Jensen-Shannon divergence:

JS(p, q) = H

(
p+ q

2

)

− H(p) +H(q)

2

F (x) = −H(x), the negative Shannon entropy H(x) = −x log x.
→ generators are convex and entropies are concave (negative generators)
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Burbea-Rao divergences: Squared Mahalanobis

BRF (p, q) =
F (p) + F (q)

2
− F

(
p+ q

2

)

=
2〈Qp, p〉+ 2〈Qq, q〉 − 〈Q(p+ q), p+ q〉

4

=
1

4
(〈Qp, p〉+ 〈Qq, q〉 − 2〈Qp, q〉)

=
1

4
〈Q(p− q), p− q〉 = 1

4
‖p− q‖2Q.

(Not a metric. square root of Jensen-Shannon is a metric but not the
square roots of all Burbea-Rao divergences.)
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Visualizing Burbea-Rao divergences

(p, F (p))

(q, F (q))

p qp+q

2

(p+q

2 , F (p+q

2 ))

(p+q

2 ,
F (p)+F (q)

2 )

BRF (p, q)
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Visualizing Bregman divergences

BF (p, q) = F (p)− F (q)− 〈p− q,∇F (q)〉,
F

q p

p̂

q̂
Hq

H ′

q

BF (p, q) = Hq − H ′

q

Kullback-Leibler (F (x) = x log x): KL(p, q) =
∑d

i=1 p
(i) log p(i)

q(i)

Squared Euclidean L2
2 (F (x) = x2):

L2
2(p, q) =

∑d

i=1(p
(i) − q(i))2 = ‖p− q‖2
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Symmetrizing Bregman divergences

Jeffreys-Bregman divergences.

SF (p; q) =
BF (p, q) + BF (q, p)

2

=
1

2
〈p− q,∇F (p)−∇F (q)〉,

Jensen-Bregman divergences (diversity index).

JF (p; q) =
BF (p,

p+q

2 ) +BF (q,
p+q

2 )

2

=
F (p) + F (q)

2
− F (

p+ q

2
) = BRF (p, q)
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Skew Burbea-Rao divergences

BR
(α)
F : X × X → R

+

BR
(α)
F (p, q) = αF (p) + (1− α)F (q)− F (αp+ (1− α)q)

BR
(α)
F (p, q) = αF (p) + (1− α)F (q)− F (αp+ (1− α)q)

= BR
(1−α)
F (q, p)

Skew symmetrization of Bregman divergences:

αBF (p, αp+ (1− α)q) + (1− α)BF (q, αp+ (1− α)q)
equal
=

BR
(α)
F (p, q)

= skew Jensen-Bregman divergences.
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Bregman as asymptotic skewed Burbea-Rao

BF (p, q) = lim
α→1

1

1− α
BR

(α)
F (p, q)

BF (q, p) = lim
α→0

1

α
BR

(α)
F (p, q)

Proof: F (αp+ (1− α)q) = F (p+ (1− α)(q − p)) ≃α≃1 F (p) + (1− α)(q − p)∇F (p)

F (αp+(1−α)q)−αF (p)−(1−α)F (q)
Taylor
≃α→1 (1−α)F (p)+(1−α)(q−p)∇F (p)−(1−α)F (q)

≃α→1 (1− α) (F (p)− F (q)− (p− q)∇F (p))

limα→1 BR
(α)
F

(p, q) = (1− α)BF (p, q)

For 0 < α < 1, swap arguments by setting α→ 1− α:

BR
(α)
F (p, q) = BR

(1−α)
F (q, p)
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Burbea-Rao centroids

OPT : c = argmin
x

n∑

i=1

wiBR
(αi)
F (x, pi) = argmin

x
L(x)

Wlog., equivalent to minimize

E(c) = (
n∑

i=1

wiαi)F (c)−
n∑

i=1

wiF (αic+ (1− αi)pi)

Sum E = F +G of convex F + concave G function⇒ Convex-ConCave
Procedure (CCCP, NIPS*01)
Start from arbitrary c0, and iteratively update as:

∇F (ct+1) = −∇G(ct)

Guaranteed convergence to a local minimum.
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ConCave Convex Procedure (CCCP)

minx E(x) = F (x) +G(x)
∇F (ct+1) = −∇G(ct)
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Iterative algorithm for Burbea-Rao centroids

Apply CCCP scheme

∇F (ct+1) =
1

∑n

i=1 wiαi

n∑

i=1

wiαi∇F (αict + (1− αi)pi)

ct+1 = ∇F−1

(

1
∑n

i=1 wiαi

n∑

i=1

wiαi∇F (αict + (1− αi)pi)

)

Get arbitrarily fine approximations of the (skew) Burbea-Rao centroids
and barycenters.
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Special cases: Closed-form Burbea-Rao centroids

Consider F (x) = 〈x, x〉.

minE(x) =
F (x)

2
−

n∑

i=1

wiF

(
pi + x

2

)

,

= min
〈x, x〉
2
− 1

4

n∑

i=1

wi (〈x, x〉+ 2〈x, pi〉+ 〈pi, pi〉)

The minimum obtained when ∇E(x) = 0

x = p̄ =
n∑

i=1

wipi

Extremal skew cases (for α→ 0 or α→ 1):
Bregman sided centroids in closed-forms: x̄ =

∑n

i=1wipi (right-sided) or
x̄ = (∇F )−1 (

∑n

i=1 wi∇F (pi)) (left-sided)
But usually only approximation using CCCP iterations.
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Bhattacharyya coefficients/distances

Bhattacharyya coefficient and non-metric distance:

C(p, q) =

∫
√

p(x)q(x)dx, 0 ≤ C(p, q) ≤ 1, B(p, q) = − lnC(p, q).

Hellinger metric

H(p, q) =

√

1

2

∫

(
√

p(x)−
√

q(x))2dx,

such that 0 ≤ H(p, q) ≤ 1.

H(p, q) =

√

1

2

(∫

p(x)dx+

∫

q(x)dx− 2

∫
√

p(x)
√

q(x)dx

)

=
√

1− C(p, q).
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Chernoff coefficients/α-divergences

Bα(p, q) = − ln

∫

x

pα(x)q1−α(x)dx = − lnCα(p, q)

= − ln

∫

x

q(x)

(
p(x)

q(x)

)α

dx

= − lnEq[L
α(x)]

Amari α-divergence:

Dα(p||q) =







4
1−α2

(

1−
∫
p(x)

1−α

2 q(x)
1+α

2 dx
)

, α 6= ±1,
∫
p(x) log p(x)

q(x)dx = KL(p, q), α = −1,
∫
q(x) log q(x)

p(x)dx = KL(q, p), α = 1,

Dα(p||q) = D−α(q||p)

Remapping α′ = 1−α
2 (α = 1− 2α′) to get Chernoff α′-divergences
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Exponential families in statistics

Gaussian, Poisson, Bernoulli/multinomial, Gamma/Beta, etc.:

p(x;λ) = pF (x; θ) = exp (〈t(x), θ〉 − F (θ) + k(x)) .

Example: Poisson distribution

p(x;λ) =
λx

x!
exp(−λ),

the sufficient statistic t(x) = x,

θ = log λ, the natural parameter,

F (θ) = exp θ, the log-normalizer,

and k(x) = − log x! the carrier measure
(with respect to the counting measure).
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Gaussians as an exponential family

p(x;λ) = p(x;µ,Σ) =
1

2π
√
detΣ

exp

(

− (x− µ)TΣ−1(x− µ))

2

)

θ = (Σ−1µ, 1
2Σ

−1) ∈ Θ = R
d ×Kd×d, with Kd×d cone of positive

definite matrices,

F (θ) = 1
4 tr(θ

−1
2 θ1θ

T
1 )− 1

2 log detθ2 +
d
2 log π,

t(x) = (x,−xTx),

k(x) = 0.

Inner product : composite, sum of a dot product and a matrix trace :

〈θ, θ′〉 = θT1 θ
′

1 + tr(θT2 θ
′

2).

The coordinate transformation τ : Λ→ Θ is given for λ = (µ,Σ) by

τ(λ) =

(

λ−1
2 λ1,

1

2
λ−1
2

)

, τ−1(θ) =

(
1

2
θ−1
2 θ1,

1

2
θ−1
2

)
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Bhattacharyya/Chernoff of exponential families

Equivalence with skew Burbea-Rao distances:

Bα(pF (x; θp), pF (x; θq)) = BR
(α)
F (θp, θq) = αF (θp)+(1−α)F (θq)−F (αθp+(1−α)θq)

Proof: Chernoff coefficients Cα(p, q) of members p = pF (x; θp) and
q = pF (x; θq) of the same exponential family EF :
Cα(p, q) =

∫
pα(x)q1−α(x)dx =

∫
pαF (x; θp)p

1−α
F

(x; θq)dx

=
∫
exp(α(〈x, θp〉 − F (θp)))× exp((1− α)(〈x, θq〉 − F (θq)))dx

=
∫
exp (〈x, αθp + (1− α)θq〉 − (αF (θp) + (1− α)F (θq)) dx

= exp−(αF (θp) + (1− α)F (θq))×
∫
exp (〈x, αθp + (1− α)θq〉 − F (αθp + (1− α)θq) + F (αθp + (1− α)θq)) dx

= exp (F (αθp + (1− α)θq)− (αF (θp) + (1− α)F (θq))×
∫
exp〈x, αθp + (1− α)θq〉 −

F (αθp + (1− α)θq)dx

= exp (F (αθp + (1− α)θq)− (αF (θp) + (1− α)F (θq))×
∫

pF (x;αθp + (1− α)θq)dx

︸ ︷︷ ︸

=1

= exp(−BR
(α)
F

(θp, θq)) ≥ 0.
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α-div./Kullback-Leibler ↔ Burbea-Rao/Bregman
Skew Bhattacharyya distances on members of the same exponential
family is equivalent to skew Burbea-Rao divergences on the natural
parameters (without swapping order).

Bα(pF (x; θp), pF (x; θq)) = BR
(α)
F (θp, θq)

For α = ±1, Kullback-Leibler of exp. fam. = Bregman divergence (limit as
α→ 1 or α→ 0).

KL(p, q) = KL(pF (x; θp), pF (x; θq))

= lim
α′→1

Dα′(pF (x; θp), pF (x; θq))

= lim
α′→1

1

α′(1− α′)
(1− Cα(pF (x; θp), pF (x; θq))

︸ ︷︷ ︸

since exp x≃x≃01+x

)

= lim
α′→1

1

α′(1− α′)
BRα′

F (θp, θq)
︸ ︷︷ ︸

(1−α′)BF (θq,θp)

= lim
α′→1

1

α′
BF (θq, θp) = BF (θq, θp)
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Closed-form Bhattacharyya distances for exp. fam.

Exp. fam. F (θ) (up to a constant) Bhattacharyya/Burbea-Rao BRF (λp, λq) = BRF (τ(λp)

Multinomial log(1 +
∑d−1

i=1 exp θi) − ln
∑d

i=1
√
piqi

Poisson exp θ 1
2
(
√
µp −√

µq)2

Gaussian − θ21
4θ2

+ 1
2
log(− π

θ2
) 1

4

(µp−µq)
2

σ2
p+σ2

q

+ 1
2
ln

σ2
p+σ2

q

2σpσq

Gaussian 1
4
tr(Θ−1θθT )− 1

2
log detΘ 1

8
(µp − µq)T

(
Σp+Σq

2

)
−1

(µp − µq) +
1
2
ln

det
Σp+Σq

2
detΣpdetΣq

Bhattacharyya, Burbea-Rao, Tsallis, Rényi, α−, β-divergences are in
closed forms for members of the same exponential family.
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Application: Statistical images and Gaussians

Consider 5D Gaussian Mixture Models (GMMs) of color images
(image=RGBxy point set)

Get open source Java(TM) jMEF library:
www.informationgeometry.org/MEF/
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Hierarchical clustering of GMMs

Hierarchical clustering of GMMs wrt. Bhattacharyya distance. Simplify the
number of components of an initial GMM.

(a) source

(b) k = 48

(c) k = 16
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Summary of results

Skew Burbea-Rao divergences occur when
Symmetrizing skew Bregman divergences: Jensen-Bregman
divergences
Bhattacharyya/Chernoff coefficients/distances of exponential
families

Apply ConCave-Convex procedure (CCCP) for computing
Burbea-Rao centroids

Skewed Burbea-Rao yields in the limit Bregman divergences

Application: Hierarchical clustering of Gaussian mixtures

(In arXiv:1004.5049, alternative tailored matrix method generalizing
ICASSP 2000 but not so efficient as the general scheme)

www.informationgeometry.org/BurbeaRao/
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