WASSERSTEIN GEOMETRY OF GAUSSIAN MEASURES

ASUKA TAKATSU

ABSTRACT. This paper concerns the Riemannian/Alexandrov geometry of
Gaussian measures, from the view point of the L2-Wasserstein geometry. The
space of Gaussian measures is of finite dimension, which allows to write down
the explicit Riemannian metric which in turn induces the L2-Wasserstein dis-
tance. Moreover, its completion as a metric space provides a complete picture
of the singular behavior of the L2-Wasserstein geometry. In particular, the
singular set is stratified according to the dimension of the support of the
Gaussian measures, providing an explicit nontrivial example of Alexandrov
space with extremal sets.

1. INTRODUCTION

The universal importance of the Gaussian measures is evident in various fields.
It sets a starting point of partial differential equations of parabolic type, and
needless to say, it is central in the field of probability. The wide recognition of
Wasserstein geometry defined on the space of Borel measures on a given metric
space, on the other hand, is a more recent phenomenon, excited by some important
advances made by Brenier [4] and McCann [16] in the 90’s, and also implicit in
Perelman’s work [24] on Ricci flows (see also [13],[18],]29] ).

This paper concerns the geometric structures of Gaussian measures, from the
view point of the L?-Wasserstein distance function W;. The space of Gaussian
measures is of finite dimension, which allows to write down the explicit Riemann-
ian metric which in turn induces the L?-Wasserstein distance. This situation is
rare since the L?-Wasserstein geometry is derived from the global data of the un-
derlying space (in the case of Gaussian measures, R?), which makes it difficult
to transcribe into the local geometry. The fact that the Wasserstein geometry
involves some singular aspects is not surprising. Actually, a measure whose sup-
port has zero Lebesgue measure (for example a Dirac measure), which in turn
causes singularities in the Wasserstein sense. Hence it is expected that the lan-
guage of Alexandrov geometry is suited, and indeed much investigation has been
done on the subject, which includes the recent works of Lott—Villani [14, 15] and
Sturm [26, 27]. However the nature of singularity can be quite complicated, and
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often the description of the complexity is incomplete. Restricting one’s attention
to the space of Gaussian measures once again provides a complete picture of the
singular behavior of the L?-Wasserstein geometry, due to the finite dimensional
space of parameterization. In particular, the singular set is stratified according
to the dimension of the support of the Gaussian measures, providing an explicit
nontrivial example of Alexandrov space with extremal sets first introduced by
Perelman—Petrunin [23]. Also one notes that the singularity is closely related to
the dissipative behavior of the heat equation, which in this context can be re-
garded as a gradient flow of a suitable functional (see [2],[25]). In this sense,
the space of Gaussian measures is a good testing ground for the L2-Wasserstein
geometry, where the fields of probability, partial differential equations, and Rie-
mannian/Alexandrov geometry meet and interact.

The probability measure N(m, V) on R? is called the Gaussian measure with
mean m and covariance matrix V' if its density with respect to the Lebesgue density
dx is given by

dN(m,V) 1

1 -1
= exp |—=(x —m, V" " (x —m))|,
dx Vdet(27V) 2 < ( )
where m is a vector in R? and V is the symmetric positive definite matrix of size
d. We denote the space of Gaussian measures on R? by A'?. Let Sym™(d,R) be
the space consisting of symmetric positive definite matrices of size d. The map

(1.1) N? = R x Sym™ (d,R), N(m, V) (m,V)

gives the differential structure on N¢.

Otto [21] showed that the heat equation and the porous medium equation can be
considered to be gradient flows in the L?-Wasserstein space of probability measures
on R? equipped with the L?-Wasserstein metric W,. He introduced a formal
Riemannian metric on the L2-Wasserstein space. In addition, he obtained a formal
expression of its sectional curvatures, which implies that the L2-Wasserstein space
has non-negative sectional curvature. (We refer to [12], where Lott computed the
Levi-Civita connection and curvature on the L2-Wasserstein space over a smooth
compact Riemannian manifold. See also Sturm’s result [26], which states that an
underlying space is an Alexandrov space of non-negative curvature if and only if
so is its L2-Wasserstein space.)

McCann [16] showed that N¢ is a totally geodesic submanifold in the L2-
Wasserstein space. Then it is natural to expect that A'¢ admits a Riemannian
metric whose Riemannian distance coincides with the L2?-Wasserstein distance.
We call such a Riemannian metric L?-Wasserstein metric. We confirm in Sec-
tion 2 that (N9 W) is a product metric space of the Euclidean space R? and
(NE, Wa), where N stands for the space of Gaussian measures with mean 0.
Since the geometry of the Euclidean space R? is trivial, we fix a mean m = 0 and
analyze the geometry M. We shall denote N (0, V) simply by N(V). According
to the differential structure on N¢, the tangent space of N at each point can be
identified with the space Sym(d,R) of all symmetric matrices of size d. However,
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the natural coordinate (1.1) is somewhat unadapted to the L2-Wasserstein geom-
etry. We give the adapted one and analyze the value of the L2-Wasserstein metric
in the coordinate.

Proposition A. On the space of Gaussian measures, the Riemannian metric g
given by
Ine) (X, Y) = tr(XVY)

for any tangent vectors X,Y in TN(V)Ng = Sym(d, R) induces the L?-Wasserstein
distance.

We mention that the L?-Wasserstein metric is different from the Fisher metric.
For example, for d = 1, the space of Gaussian measures with the Fisher met-
ric can be regarded as an upper half plane with the hyperbolic metric (see [1]).
Meanwhile, the space of Gaussian measures with the L2?-Wasserstein metric has
non-negative sectional curvature. This follows from the following formula for the
sectional curvatures on AN¢ with the L2-Wasserstein metric. Namely, we verify
Otto’s formula by restricting to a finite dimensional, totally geodesic submanifold
N¢ of the L?-Wasserstein space. We denote the transpose of a matrix A by TA.
Let [-,:] be the bracket product, that is, [X,Y] = XY — Y X for matrices X,Y.
Tangent vectors X,Y at N (V) are said to be linearly independent if

an ) (X, Y) = gnen (X, X)gn o) (YY) — gn) (X, Y)? #0.
Theorem B. Let g be the L2-Wasserstein metric on N&, expressed by
Inw)(X,Y) = tr(XVY)

for any tangent vectors X,Y in TN(V)J\/(jl = Sym(d,R). For linearly independent
tangent vectors X,Y at N(V), the sectional curvature Ky vy(X,Y) is given by

Knwy(X,Y)ano) (X, Y) = th (v, X] = S)VT([y,X] - 5)),

where the matriz S is a symmetric matriz so that ([Y, X]—S)V is anti-symmetric.

The formulae of sectional curvatures on the L?-Wasserstein space which have
been derived in [12],[21] are quite difficult to compute. However our formula of
sectional curvatures on N'¢ is easily computable in terms of matrices. We moreover
show that A'¢ has a cone structure. To prove it, we construct the completion of
/\/'(31 as a metric space, denoted by /\/’517 in Section 4. (Ngl is not complete with
respect to the L2-Wasserstein distance.) The space N is identified with the set
Sym(d,R)>o which consists of symmetric non-negative definite matrices of size d.
Hence elements of N§ can be denoted by N(V) for some V in Sym(d,R)>o. An
element of N \ N is called the degenerate Gaussian measure. For example, the
Dirac measure is one of degenerate Gaussian measures.

We see that in Section 5 the space N is a finite dimensional Alexandrov space
of non-negative curvature. We shall study the stratification and the tangent cone
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of N&. For definitions and further details, we refer to [22] for stratifications and [5]
for tangent cones.

Theorem C. For ecach 0 < k < d, we set

S(d, k) = {V € Sym(d, R)

k eigenvalues are positive,
(d — k) eigenvalues are 0 ’

Se={N(V) | V € S(dk)}.
Then the set {Si}l_, forms a finite stratification of./\Tg into topological manifolds.

This gives an explicit nontrivial example of extremal subset in the context of
Gaussian measures, since closures of strata are extremal (see [22],[23]). The defi-
nition of extremal subset is first given in [23] for subsets of compact Alexandrov
spaces of finite dimension. Petrunin [25] later showed that the compactness as-
sumption is unnecessary.

Let {e;}&; be the canonical basis of R? where e; is the d-tuple consisting of all
zeros except for a 1 in the ith spot. We denote the space of orthogonal matrices
of size d by O(d). For P in O(d), we set the subspace S¥(d, k) of Sym(d,R) as

SP(d, k) = {X € Sym(d, R)‘ (a'Pe;, Xa’ Pej) > 0, for numbers {ai}?:kﬂ} .

In other words, S (d,k) can be identified with the set of symmetric positive
semidefinite bilinear forms on a (d — k)-dimensional subspace of R? spanned by
{Pei}f:kH. (In this paper, we use the Einstein summation convention.)

A stratification gives a homeomorphism between a sufficiently small neighbor-
hood of a point and its tangent cone (see [22],[23]). Hence Theorem C implies the
following corollary.

Corollary D. For N(V) in S, we assume that V is decomposed as
V = Pdiag[\!,...,\*,0,...,0] P,

where P is an orthogonal matriz and {\*}¥_, are positive numbers. Then a tangent
cone at N (V) is homeomorphic to ST (d, k).

In a special case, we determine a distance function on the tangent cones. First
we consider the case of points in N(‘)i. For a point of Néi , its tangent cone coincides
with its tangent space of N with the L2-Wasserstein metric.

Proposition E. For N(V) in N, the tangent cone at N(V) is isometric to
(Sym(d,R),dy ), where dy is given by

dy(X,Y) = /tr((X = Y)V(X —Y))
for any X, Y in Sym(d,R).

We next consider the tangent cone at the Dirac measure N(0) centered at
the origin 0 in R%. The key fact is that dilations of covariance matrices induces
dilations in the L2-Wasserstein space.



Theorem F. The tangent cone at N(0) is isometric to (J\Tg, Wa).

Theorem F implies that A has a cone structure. More generally, Yokota and
the author [28] have shown that if an underlying space has a cone structure, then
so does its L2-Wasserstein space.

In the case of d = 2, we acquire the following equivalence;

X = <‘; Z) € SP(2,1) < (2,9,2) € R x R x R,

where E is the identity matrix. It means that S¥(2,1) is homeomorphic to the
upper half-space R x R>g x R.

Theorem G. For a positive number A, the tangent cone at N(diag[A\?,0]) is iso-
metric to the Euclidean upper half-space R x R>¢ x R.

The organization of the paper is as follows: After introducing the L2-Wasserstein
geometry, we state preceding results of the L2-Wasserstein geometry on A4 in Sec-
tion 2. Then we prove Proposition A and Theorem B in Section 3. The principal
objective in Section 4 is the completion of j\/'(‘)i. We shall consider properties of ¢
as an Alexandrov space in Section 5. We first investigate the stratification, which
is stated in Theorem C. The last part of Section 5 deals with the tangent cones.
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for his support and encouragement. She would also like to express her gratitude to
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2. L2-WASSERSTEIN SPACES

In this section, we shall review the L2?-Wasserstein space. It is a pair of a
subset of probability measures on a complete separable metric space and a distance
function derived from the Monge-Kantorovich transport problem. See [30] and [31]
for general theory.

Given a complete separable metric space (M, dys), let p and v be Borel proba-
bility measures on M. The set of Borel probability measures p on M satisfying

/ dar (2, y)*dp(y) < oo
M

for some z in M will be denoted by Po(M). A transport plan 7 between p and v
is a Borel probability measure on M x M with marginals p and v, that is,

7B x M] = u[B], =M x B] = v|B]
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for all measurable sets B in M. Then the L?-Wasserstein distance between u and
v in Pa(M) is defined by

[N

Wi, v) (inf/MXMdM(m,y)Qdﬂ(x,y))

s

Here the infimum is taken over all the transport plans 7 between p and v. Then Ws
is a distance function on Pa(M) (see [31, Chapter 6] for further details). We call
the pair (P2(M), Ws) L?-Wasserstein space over M. A transport plan is optimal
if it achieves the infimum. Optimal transport plans on the Euclidean spaces are
characterized by the push forward measures.

Let F be a measurable map on R%. For a Borel probability measure x on R?,
the push forward measure Fyu through F on R? is defined by Fyu[B] = u[F~(B)]
for all measurable sets B in RY. We denote the identity map on R? by id.

Theorem 2.1 ([4],[9]). For u, v in P2(R?), we assume that u is absolutely contin-
uous with respect to the Lebesgue measure. Then we obtain the following properties;

(1) there exists a convex function v whose gradient Vi) pushes p to v.
(2) this gradient is uniquely determined (u-almost everywhere ).

(3) the joint measure [id x Vlyu is optimal.

(4) Fort in [0,1], [(1 —t)id 4+ tVYlsu is a geodesic from i to v.

In this paper, a geodesic is always assumed to be minimizing with constant
speed. We also refer to [17], where McCann extended this theorem to a case of
the connected compact Riemannian manifold without boundary in place of R<.

Though Theorem 2.1 characterizes optimal transport plans, it is usually difficult
to obtain optimal transport plans and concrete values of the L?-Wasserstein dis-
tance between two given Borel probability measures. However, the L2-Wasserstein
distance between Gaussian measures was explicitly computed by several authors;
Dowson-Landau [7], Givens-Short [10], Knott-Smith [11] and Olkin-Pukelsheim [19].
For X in Sym™ (d,R), we define a symmetric positive definite matrix vX = X1/2
so that X*/2. X1/2 = X,

Theorem 2.2 ([7], [10], [11], [19]). The L?-Wasserstein distance between Gaussian
measures N(m,V) and N(n,U) is given by
(2.1) Wo(N(m, V), N(n,U))* = |m —n|? + trV + trU — 2trV U2 VU 2.

As observed from this formula, N'¢ is isometric to the product metric space
RY x N¢. Therefore we fix mean m = 0 and we consider the geometry on N¢.
McCann [16] demonstrated that N is a totally geodesic submanifold of the L2-
Wasserstein space.

Lemma 2.3. ([16, Example 1.7]) For N(V) and N(U), we define a symmetric
positive definite matriz T and its associated linear map T by

T=U>U*VU?)"2U%, T(x)=Tx.
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Then, T pushes N(V') forward to N(U) and [idx T]3N (V) is an optimal transport
plan between N (V) and N(U). We moreover define a matriz W (t) by

W(t) = [(1—t)E +tT|V[(1 — t)E + tT]
fort € [0,1]. Then, {N(W(t))}icpo,1] is a geodesic from N(V') to N(U).

We call the above matrix T' (unique) linear transform between N (V') and N(U).
For X € Sym(d,R) and V € Sym™ (d, R), we set

(2.2) V(t) = (E+tX)V(E +tX)

for sufficiently small ¢ so that V(t) is positive definite. Then N(V(t)) is well-
defined and Lemma 2.3 guarantees that N (V (¢)) is a geodesic in (N¢, Wa).

3. PROPERTIES OF Nd AS A RIEMANNIAN MANIFOLD

We shall prove Proposition A and Theorem B. In the end of this section, we
refer to Otto’s result [21]. For general theory of Riemannian geometry, see [8].

Let G = Gl(d,R) denote the set of invertible matrices of size d. Then the
tangent space of G at each point is identified with the set M(d,R) of all square
matrices of size d. Define G : M(d,R) x M(d,R) — R by

G(Z,W) = tr(Z2W),

then G is obviously a flat Riemannian metric on G.
We define a map I : G — N by II(A) = N(ATA), then II is surjective and the
differential map dIl4 of IT at A is given by

dls(Z) = ZTA+ AZ
For A in II7Y(N(V)), V4 is a subspace of T4G = M(d,R) consisting of vectors
which tangent to fibers II"*(N(V)). In other words,
(3.1) Z €Va<+= 7 =—-A""Z"A. (Z"Ais anti-symmetric.)

Let H 4 be the subspace of T4G = M(d,R) consisting of vectors which are normal
to fibers II"1(N(V)), that is, Z satisfies G(X,Y) = 0 for any W in V4. Then we
obtain the following equivalent condition;

(3.2) ZE€Hp < "Z=TAZA™'. (ZA™! is symmetric.)

For Z in TG = M(d,R), Zy and Z3 stand for the orthogonal projections of
Z onto V4 and Hy4, respectively. We call elements of V4 and H 4 vertical and
horizontal vectors, respectively.

We define a Riemannian metric g on Nod by

gu(dl(Z),dIL(W)) = G(Z3, Wy).

Then II is a Riemannian submersion.
Under a Riemannian submersion, horizontal geodesics are mapped to geodesics.
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Proposition 3.1. ([8, Proposition 2.109)) Let I : (M, ) — (M, g) be a Riemann-
ian submersion. For a geodesic ¢(t) in (M,g), if the vector & (0) is horizontal, then
ITo ¢ is also geodesic of (M, g).

Using this proposition, we construct a geodesic from N(V) to N(U) in (N, g)
and prove Proposition A. To do this, let us summarize the correspondence between
Tri(4)N§ and Sym(d, R) due to (3.2), which is different from that due to the natural
coordinate (1.1). The horizontal part H 4 is canonically identified with Ty A)J\/'(ﬁi
and then we associate Z € H4 with ZA~! € Sym(d,R). In this coordinate, we
have dIl4(Z) = ZA~! for Z € H,, in other words,

(33)  Z€Hyiye and dlly2(Z) = X <= X = ZV "% € Sym(d, R),

and the geodesic N(V (¢)) with V(0) = 0 and initial velocity V’(0) = X coincides
with the geodesic (2.2) (as we will verify below). Moreover, (3.3) rewrites g as
(3.4) v (X,Y) = G(XVY2 YV2) = tr(XVY).

In what follows, we use this identification (3.3) for simplicity.
Proposition A. On the space of Gaussian measures, the Riemannian metric g
given by

for any tangent vectors X,Y in TN(V)./\/'g = Sym(d, R) induces the L?-Wasserstein
distance.

Proof. For V,U in Sym™(d,R), we define
A=V3i Z=[U*(U2VU2)":U* - E]V?,
then Z lies in H 4 due to (3.2). We set a curve {Z(t)}sg[0,1) in G as
Z({t)=A+tZ.

Since (G, G) is flat, {Z(t)}icj0,1) is a geodesic whose initial velocity Z’(0) is the
horizontal vector Z at Z(0) = A. Proposition 3.1 yields that {IT o Z(t)}c[o,1) is a
geodesic in (N, g) from N(V) = II(Z(0)) to N(U) = II(Z(1)). By definition of
Riemannian distance, we obtain the following equalities;

Wa(N(V), N(U))? = trV + trU — 20V U2 VU2

=tr(Z2'Z)
=G(2,2)
= gn(dll(Z),dII(Z))(A)
= dg(I(Z(0)), 11(Z(1)))*

— d,(N(V), N(U))2.

It implies that the Riemannian distance d, of g coincides with the L?-Wasserstein
distance Ws. O

We now give an expression of sectional curvatures for the Riemannian manifold.



Theorem B. Let g be the L%-Wasserstein metric on N, expressed by
any(X,Y) = tr(XVY)

for any tangent vectors X,Y in TN(V)N(? = Sym(d,R). For linearly independent
tangent vectors X,Y at N(V'), the sectional curvature Ky (X,Y) is given by

K (X, V)an (X,Y) = St (1Y, X] = S)V Y, X] - 5))
where the matriz S is a symmetric matriz so that ([Y, X]—S)V is anti-symmetric.
Proof. Let Z, W be horizontal vector fields on G satisfying

Q(Z,W) = G(Z,Z)G(W,W) — G(Z,W)? £ 0.

Then O’Neill’s formula [20] yields

(3.5) K(dTI(Z), dII(W))Q(Z, W) = SG(1Z, Wi, [Z, W),

For any X and Y in Sym(d,R), there exist unique horizontal vectors Z and W at
V1/2 50 that dIly1/2(Z) = X and dIly2(W) =Y. By (3.3), we get

X=2ZV":, Y=WV=.
We define vector fields Z and W on G by
Z(A)=ZV 2A=XA, W(A) =WV 2A=YA
for any A in G. Due to (3.2), these vector fields are horizontal and we obtain
(3.6) dI(Z)(VE) =X, dI(W)(V3)=Y, QZ,W)(V3?)=qyu)(X,Y)

In the (global) standard coordinate functions {z;;}1<; j<a of G , these vector
fields are expressed by

0

8%‘1']"

Z = (X" ;) W = (V)

(')xij ’
where X% and Y% stand for the (i,j)-components of X and Y, respectively.
Therefore we have

0

(Z, W] = (X2, Y — Yy X)) —.
8.13@'

It implies that

(Z, W](A) =Y, X]- A
for any A in G. Let S = dII([Z, W])(V'/?) in Sym(d,R). Then we obtain S =
[Z, W]y (V2)- V12 by (3.3) and

[Z, W], (V2) = ([Z, W] - [Z,W]) (VE) = (Y, X] - S) - V.
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The property (3.1) of vertical vectors implies that ([Y, X] — S) V is anti-symmetric.
The norm of the vertical vector [Z, W]y at V'1/2 is as follows;

(8.7) G2 Wy, [Z.W)(VE) = G([¥. X] - §) - VE,([¥. X] - §) - V'¥)
=tr (([Y, X]-S)V Ty, X] - S)) .

Substituting (3.6) and (3.7) into the O’Neill formula (3.5), we acquire the formula
in Theorem B. ]

Remark 3.2. Otto [21] constructed a “Riemannian” submersion 7 from D onto
Pa<(R?) by using push forward measure with a base measure yu, that is, 7(F) =
Fyp. Here D denotes the set of all diffeomorphisms of R? and P3¢(R¢) denotes the
the subspace of P2 (RY) consisting of absolutely continuous measures with respect
to the Lebesgue measure, respectively. The infinite dimensionality of P3¢(R9)
and D makes the result formal, however restrictions into totally geodesic finite
dimensional subspaces are rigorous. Therefore we choose the space of Gaussian
measures as the totally geodesic Riemannian submanifold and Theorem B rewrote
Otto’s expression in a simple explicit form on N¢. See also [12], where Lott gave
an expression of the sectional curvature on the L2-Wasserstein spaces over smooth
compact Riemannian manifolds.

4. METRIC COMPLETION OF N

In this section, we construct the completion of NV in terms of characteristic
functions (more detailed treatment of this topic can be found for instance in [3]).

The characteristic function ¢,, of a probability measure p on R? is defined as
the Fourier transform of the probability measure pu:

ou€) = [ o0 [V=T(0.6)] duta),

Then the characteristic function of a Gaussian measure N(m, V) is given by

exp [V=Tm.€) - 6.V

It is well-known that the weak convergence of probability measures is equiva-
lent to the pointwise convergence of their characteristic functions. An element of
the completion of V¢ in the sense of weak convergence is called the degenerate
Gaussian measure. Its characteristic function is given by

1
€Xp |:2<£a V£> :| )
where V' is a symmetric non-negative definite matrix.

Remark 4.1. The characteristic function of the Dirac measure 9, centered at m
in R? is given by exp[y/—1{(m,¢)].



11

On the other hand, the convergence in the sense of L?-Wasserstein space implies
the weak convergence (see [31, Theorem 6.9]). Therefore the completion of N
in the sense of weak convergence contains the one in the sense of L2-Wasserstein
space, and after simple calculations we conclude that the both spaces coincide.
Thus it is natural to denote any element of N§ by N (V) for some V in Sym(d, R)>o.

Remark 4.2. We can generalize the distance formula (2.1) defined on N to ./\75’
because we can define V/2 for any V in Sym(d, R)>¢. Namely, V/2 is a symmetric
non-negative definite matrix such that V'/2.V1/2 = V. Therefore we obtain

Wo(N(V), N(U))? = trV + trU — 2trVU2VU 2,
for N(V) and N(U) in NZ.

5. PROPERTIES OF N¢ AS AN ALEXANDROV SPACE

5.1. Alexandrov space. Let us summarize some definitions and basic results on
the geometry of Alexandrov spaces. Standard references are [5] and [6].

Let (M,das) be a complete geodesic metric space, that is, each pair of points
x, y is connected by a geodesic. For k in R, we denote a simply-connected, 2-
dimensional Riemannian manifold of constant sectional curvature x by M2 (k).
Let d, be a Riemannian distance of M?(x). For any three points z,y,z in M
(provided that [das(z,y) + dar(y, 2) + du(z,2)]? < 4n%/k if k > 0), there exist
corresponding points 7,7, Z in M?(k) which are unique up to an isometry so that
da(z,y) = du(Z,9), dpm(y, 2) = du(, 2) and dp(z, ) = de (2, ). We also denote
the unique geodesic from & to § by vz5 : [0, 1] — M?(k).
Definition 5.1. Let (M,dys) be a complete geodesic metric space. Given any k in
R, we say that (M,djs) is an Alexandrov space of curvature > « if for any three
points x,y,z in M (provided that [dy(x,y) + dar(y, 2) + da(z,2)]? < 4n?/k if
k > 0), any geodesic v : [0,1] = M from y to z and any ¢ in [0, 1], we have

d(z,7(t) = du(Z, 52 (1)).

The triangle AZgz is called the comparison triangle of Axyz. We next define
a comparison angle.
Definition 5.2. Let x,y, z be three distinct points in a geodesic space (M,dy). A
comparison angle of Zxyz, denoted by Zzxyz, is defined by
M(m7 y)2 + d]V[(y7 Z)2 - dM(Zv 1.)2

2d (2, y)dw (y, 2)

In a similar way, we define an angle between two paths starting at the same
point.

/xyz = arccos

Definition 5.3. Let v and o be two paths in a geodesic space starting at the same
point p. We define an angle Z,(v,0) between v and o as

Lp(v,0) = Jm ZLry(s)po(t),
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if the limit exists.

In the case of geodesics in Alexandrov spaces, the limit always exists and does
not depend on the choices of s,t. For any two geodesics v,0 with unit speed
starting at the same point, the angle between v and o is equal to 0 if and only if
there exists a positive number € such that vy(¢) = o(¢) for all ¢ in [0, ]. Using these
facts, we briefly discuss the tangent cone of M. Let (M,dys) be an Alexandrov
space of curvature > k. Fix a point p in M. We define E; as the set of geodesics
starting at p equipped with an equivalence relation | , where 7 || o holds if
Zp(v,0) = 0. The angle Z, is independent of the choices of v and ¢ in their
equivalence classes. Then Z,, is a natural distance function on E;. We define the
space of directions (%,,Z,) at p as the completion of (¥}, /,) and the tangent

cone (K,,d,) as a cone over (X,,2,).

Definition 5.4. Let (M,dp) be a metric space. The cone over M is a quotient
space M x [0,00)/ ~ , where an equivalence relation ~ is defined by (z, s) ~ (y,t)
if and only if s = ¢ = 0. We call the equivalence class of (-, 0) vertex. The distance
d¢ on the cone is defined by

de((,5), (y,1)) = /52 + 2 — 2st cosmin{das(z,y), 7}.

We denote a vertex of a tangent cone K, at p by o,. For each point p in
a finite dimensional Alexandrov space of non-negative curvature, there exists a
homeomorphism from a neighborhood of p to the tangent cone at p sending p
to op. Here we mean by the dimension the Hausdorff dimension. Tangent cones
and stratification are useful when we analyze local structures of finite dimensional
Alexandrov spaces. Roughly speaking, every finite dimensional Alexandrov space
is stratified into topological manifolds.

Definition 5.5. A collection {S;}Y , of subsets of a topological space M forms a
(finite) stratification of M into topological manifolds if

(1) the sets S; are mutually disjoint, and Uij\io S =M.

(2) every set S; is a topological manifold.

(3) dimSp < dimS; < -+ - < dim Sy
(4) for every k =1,..., N, the closure of Sy is contained in S;” = Uf:o S;.

Sturm [26] proved that if an underlying space is an Alexandrov space of non-
negative curvature, then so is its L2-Wasserstein space. It yields that (Pa(R%), W5)
is an Alexandrov space of non-negative curvature. Since J\T(j'l is a complete, to-
tally geodesic subspace of Pa(R9), J\TOd provides an explicit nontrivial example of

Alexandrov space of non-negative curvature. We consider properties of ¢ as an
Alexandrov space.

5.2. Stratification. We first give an expression of a stratification of J\Téi.
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Theorem C. For each 0 < k < d, we set

_ k eigenvalues are positive,
S(d, k) = {V € Sym(d, R) ‘ (d — k) eigenvalues are 0 } ’

Sk ={N(V) | V € 5(d, k)}.
Then the set {Sk}gzo forms a finite stratification of./\Téi into topological manifolds.

Proof. We check that {S;}{_, satisfies the properties in Definition 5.5. Prop-
erty (1) follows from the definition of Si. To show Properties (2),(3), we construct
a homeomorphism from Sy to a topological manifold. Let G(d, k) be the Grass-
mannian manifold of k-dimensional subspaces of R?. Define a set M(d, k) by

M(d, k) = {(Gk, Vk)|Vk is an inner product on Gy € G(d, k)},

which is homeomorphic to a product topological manifold G(d, k) x Sym™ (k,R).
For V in S(d, k), there exist an orthogonal matrix P and positive numbers
{\}E_ so that

V = Pdiag[A!,..., A% 0,...,0]"P.

We set Gi(V) as a k-dimensional subspace of R? spanned by {Pe; le. Then
G (V) is independent of the choice of P and a map V — G (V) is well-defined.
Let fi : Sk — M(d, k) be defined by

(N(V)) = (Gr(V), Vx),

where V. is a restriction of V to G (V). We verify that the map fi has an inverse
map. For any G}, in G(d, k), there exists an orthogonal k-frame {p;}_, spanning
Gg. Then a map g : M(d, k) — S given by

gk(GkaVk) = N(TPVkP)7 P = (p17"'7pk)

is well-defined. It is clear that gi o fi = ids, and fx o gx = idaq(q,r). Thus gy is
the inverse map of fi. The continuity of each component of covariance matrix is
equivalent to the continuity on N with respect to the L?-Wasserstein distance.
Therefore f; and gi are continuous and hence fj is a homeomorphism. In turn,
Sk is a topological manifold of dimension k(d — k) + 271k(k + 1), which is the
dimension of M(d, k). It guarantees Properties (2),(3).

Finally we confirm Property (4). In the same way as the completion of V¢, the
closure of Sy is given by

{N(V) € Sym™(d,R) | At least (d — k) out of eigenvalues of V are 0},

which is just S,j.
Thus {S;}¢_, forms the finite stratification of N into topological manifolds.
d
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5.3. Tangent cone. In this section, we discuss the tangent cones of (/\7517 Wa).
Let V be a symmetric matrix decomposed as

V = Pdiag[\',..., A% 0,...,0]"P
where P is an orthogonal matrix and {\‘}¥_, are positive numbers. We set
G4™*(V) as a (d — k)-dimensional subspace of R? spanned by {Pe;}¢_, ,,. Then
a tangent cone at N (V') is homeomorphic to the set of symmetric bilinear forms
which are positive semidefinite on G=*(V), that is

SP(d, k) = {X € Sym(d,R)| (a'Pe;, Xa’ Pe;) > 0, for numbers {ai}?:kﬂ} .
Corollary D. For N(V) in Sk, we assume that V is decomposed as
V = Pdiag[\',...,\*,0,...,0]P,
where P is an orthogonal matriz and {\'}¥_, are positive numbers. Then a tangent
cone at N (V) is homeomorphic to ST (d, k).
Proof. A bijective map
Ng — Sym(d,R)>g, N(X) > X'/

can be considered as coordinate functions due to (2.2). Let N(V(¢)) be a geodesic
starting at N (V). Since any geodesic has a linear approximation, we obtain that
V2(t) = V1/2(0) +t(V/2)/(0) + o(t) for sufficiently small £. Thus we can identify
(V1/2)"(0) with a point sufficiently close to N(V). The non-negativity of V(t)
yields the non-negativity of (V1/2)'(0) on G*~*(V). Indeed, we have

<aiPei, (Vl/Q(t) - V1/2(0)) ajP6j> = <aiPei, V1/2(t)aﬂ'Pej> >0
for any numbers {a’}L . 4+1- Therefore we identify a small enough neighborhood
of N(V) with S¥(d, k). On the other hand, Theorem 5.7 implies that Ky is

homeomorphic to a neighborhood. Thus the tangent cone Ky is homeomorphic
to S¥(d, k). O

In a special case, we determine a distance function on the tangent cones. First
we consider the case of points in N

Proposition E. For N(V) in N, the tangent cone at N(V) is isometric to
(Sym(d,R),dy ), where dy is given by

4 (X,Y) = /(X —V)V(X = 7))
for any X, Y in Sym(d,R).

Proof. Because N are locally Euclidean, tangent cones of (./\761 , W) coincide with
tangent spaces of N with the L2-Wasserstein metric for points in N¢ (see [5]).
Thus the tangent cone is identified with Sym(d, R), and (3.4) implies

dv(X,Y)? = gnen)(X - Y, X —Y) = tr((X - Y)V(X - Y)).
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We next construct a distance function on the tangent cone at the Dirac measure
N (0) centered at the origin 0 in RZ. There exists a useful theorem in understanding
the metrical structure of tangent cones for finite dimensional Alexandrov spaces.

Definition 5.6. A sequence {(M,,,dn,pn)}n of pointed metric spaces converges to
a pointed metric space (M, dys,p) in the Gromov—Hausdorff sense if the following
holds: For every r > 0 and € > 0 there exists a positive integer ng such that for
n > ng there is a map f, from an open ball B,.(p,), of center at p,, and radius r,
to M, which satisfies the following three properties;

(1) fa(pn) =D
(2) sup |d"(x7y) - dM(fn(x>’ fn(y))‘ <é&.

z,yeEM,y,

(3) the e-neighborhood of f,,(B,(py)) contains the open ball B,_.(p).

Theorem 5.7. ([6, §7.8.1],[5, Theorem 10.9.3]) Let (M,dys) be a complete, finite
dimensional Alexandrov space of non-negative curvature. Then, at every p in M,
the tangent cone (Kp,dp,0,) is isometric to the limit of the scaled pointed metric
space (M, c-dy,p) in the Gromov—-Hausdorff sense as ¢ diverges to infinity.

We now prove that (./\7517 Ws) has a cone structure.

Theorem F. The tangent cone at N(0) is isometric to (/761, Wa).

Proof. We shall prove that the scaled pointed metric space (N, n-Wa, N(0)) con-
verges to (N, Wa, N(0)) in the Gromov—Hausdorff sense as n diverges to infinity.
For every r > 0, ¢ > 0 and a positive integer n, we shall check that a map
fu s Br(N(0) = N, fa(N(V)) = N(n?V)
satisfies the properties in Definition 5.6. Here B,(N(0)) stands for an open ball
in (NV&, Ws). Property (1) holds since we have
fu(N(0)) = N(n* - 0) = N(0).
The relations tr(n?V) = n?trV and (n?V)Y/? = nVY/?2 imply
Wa(fo(N(V)), fu(N(U))? = n? [tV + t1U — 200V U VU3 }
=n*Wa(N(V),N(U))*

for any N(V), N(U) in N¢. This shows that Property (2) holds.

For any N (V) in B,_.(N(0)), fo(N(n=2V)) = N(V) and N(n=2V) belongs to
B,-1,(N(0)), proving that Property (3) holds.

Thus (N&,n - Wa, N(0)) converges to (N, Wa, N(0)) and Theorem 5.7 yields
Theorem F. O

Finally, we state the following metrical property of the tangent cones on N{.

Proposition 5.8. For all V in Sym(d,R)>¢ and P in O(d), the tangent cone at
N(V) is isometric to the tangent cone at N("PV P).
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Proof. Since a pointed isometry map between (AT(?,N(V)) and (/\Téi,N(TPVP))
can be extended to an isometry map between Ky vy and K N(TPV P), 1t 18 sufficient

to construct such an isometry map. Let ¢ be a map on N sending N(X) to
N("PXP). Then we obtain

Wa(o(N (X)), o(N(Y))? = trX + 1Y — 26:V/XFY X F = Wa(N(X), N(Y))?

for all N(X),N(Y) in NZ. Additionally, it is clear that ¢(N(V)) = N(TPVP).
Thus ¢ is a desired isometry map. O

5.4. Tangent cone in the case of dimension 2. In the previous subsection, we
described the metrical structure of the tangent cones at N(V') in S, for k = 0,d.
In the case of d = 2, we can derive a metrical structure of the tangent cones at
N (diag[\2?,0]). Applying Proposition 5.8, we obtain a metrical structure of the
tangent cones at each point of S;. As mentioned in the introduction, we acquire
the following equivalence;

X = (”Z” ;) € S¥(2,1) <= (v,y,2) € R x Ry x R.

Thereby S¥(2,1) is homeomorphic to the upper half-space R x R>q x R.

Theorem G. For a positive number X, the tangent cone at N(diag[A\?,0]) is
isometric to the Euclidean upper half-space R X R>o x R.

Proof. Set A = diag[\?,0] and p = N(A). We prove Theorem G in several steps:
First we construct a geodesic from p to N(V) in NZ. We next confirm that an
inextensible geodesic starting at p meets a boundary of a ball B,(A/2). Then we
compute angles between geodesics starting at p. Finally we prove that (X, /) is
isometric to a semi-sphere. This isometry can be extended to an isometry between
the tangent cone K, and the Euclidean upper half-space R x R>g x R. In what
follows, components of symmetric matrices V, X in Sym(2,R)>¢ and a vector = in
R3 are expressed by

V= (u w), X = (x Z), 2= (&, (), respectively.

wow z Y
For N(V) in V¢, u,v should be positive and a linear transform T from N (V) to
N(A) is given by diag[Au~2,0]. In fact, let 7 be a linear map associated with 7,
that is, 7(x) = Tz for x in R2. Then T pushes N (V) forward to N(A) and T is
a gradient of a convex function (z,T'z)/2. Theorem 2.1 yields that [id x T|3N (V)

is an optimal transport plan between N (V') and N(A). Moreover, a geodesic from
N(V) to N(A) is given by

[(1=8)id + TN (V),
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for ¢ in [0,1]. Let {N(V(t))}ieo,1] be a geodesic from N(A) to N(V') (not from
N(V) to N(A)), then we acquire

NV () =[t-id+ (1 = ) TRN(V),
_( OHtVu=N? a2 (V- )
(5.1) V() = (twul/z()\ +t(vu— X)) t* ) .

This expression of geodesics can be extended to the case of u > 0.

For N (V) satistying Wa(p, N(V)) > A\/2, it is trivial that a geodesic from p to
N(V') meets the boundary of B,(A/2). We consider the case of N(V) in B,(\/2),
that is,

P =Wy(p,NV))? = (Vu—-N?+0v < \2/4.
Because V lies in Sym(2,R)>o, v is non-negative and hence u is positive. It
enables us to have a geodesic {N(V(t)) }+¢[0,1] from N(A) to N(V') asin (5.1). For
all positive numbers ¢, V (¢t) are well-defined and we have

det V(t) = (det V)E*(A + t(vu — \))?u™! >0,

trV (t) = (A +t(vVu — \)? 4+ t*v > 0,
proving V(t) in Sym(d,R)>o. For V = V()\/2l), we have Wa(p, N(V)) = A/2.
Then we obtain a geodesic {N (V' (t)) }+e[0,1] from N(A) to N(V') as in (5.1). It is
an extension of {N(V(£))}iep0,1] since geodesics in N do not branch. Therefore
inextensible geodesics starting at p meet the boundary of B,(A/2).
It suggests that Z;, can be identified with
{yv : a geodesic from p = N(A) to N(V) | Wa(p, N(V)) = A/2}.

We compute angles between geodesics in ¥, For geodesics vy (t) = N(V (t)) and
yx(t) = N(X(t)) in X}, we acquire

V(t)_< A+ t(Vu— N)? twul/z(A+t(f—A))>’

fwou 2\ + (/i — X)) tho
_( OHIVE=NP T A (VE - )
X(t) = <t2x1/2(>\+t(\f—)‘)) t?y ) '

Since N(V), N(X) belong to the boundary of B,(\/2), we have uz # 0. We
compute the comparison angle of Zvyy (¢)pyx(t):

Wa(p, v (t)* + Wa(p, vx (£))* — Walyv (1), vx (1))
2Wa(p, v (8))Wa(p, vx (1))

:A42[(f—A)(f—AHdeet(VX)z+0(t2)],

cos Zyy (H)pyx (t) =

Vux 12

which converges to

% (Vi = N(VE =N+ () F (wz 4+ det(vX)1)]
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as t converges to 0. Thus we have

Zp(yv,7x) = arccos % (Vu — Nz = A) + (uz)~3 (wz —l—det(VX)%)} )

For the rest of the proof, we identify ~y in Z; with the matrix V. Let ST be
the semi-sphere defined by

St={E=(En € +n*+=1,72>0}.
It is a complete metric space with the standard Euclidean angle metric Z. We
define a map ¢ from X}, to ST by

2 1
(V) = X (\/ﬂ— A (v—wPut)? ,wu_%) )
The map ¥ has an inverse map ¢ given by

o(3) = ((2 +6)” <22+s>2<> |
4 \2+8¢ 1" +¢
For V, X in ¥, we have
cos Zp(V, X) = ((V), (X)) = cos Z(y(V), (X)),
proving that (X', Z,) is isometric to (S, £).

Thus (X', Z,) is complete and hence (¥7,, Z,,) = (X,, £p). The isometry map ¢
can be extended to an isometry map ¥ from the tangent cone K, to the Euclidean
half-space R x R>¢ x R:

2t
UVt = tp(V) = 5 (V= (v —w?u™)

This completes the proof of Theorem G. O

N
S
zl
W=
N—
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