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ABSTRACT

Digital fabrication serves as a potent instrument for facilitating
interaction between the real and digital realms. However, the pro-
cess is becoming increasingly complex amidst its development. We
present Sacriface, a simple and versatile support structure for 3D
printing which allows us to obtain further efficiency and flexibility
in 3D printing. We simplified the strategy of expanding support
structures taking advantage of a stable, growing overhang that
gradually recovers its original shape as printing thickness increases.
Sacriface is effortlessly designed and printable using an unmodified
3D printer, which enhances user customization.

CCS CONCEPTS

« Human-centered computing — Human computer interaction
(HCI).

KEYWORDS
3D Printing, Support Structures, Personal Fabrication, Failure

ACM Reference Format:

Tomoki Takahashi, Yusuke Sakai, and Lana Sinapayen. 2023. Sacriface: A
Simple and Versatile Support Structure for 3D Printing. In The 36th Annual
ACM Symposium on User Interface Software and Technology (UIST °23 Ad-
Jjunct), October 29—November 01, 2023, San Francisco, CA, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3586182.3616649

1 INTRODUCTION

Fused filament fabrication (FFF) is a powerful tool for realizing
3D digital designs into physical objects. On the other hand, the
process of stacking filaments layer by layer has a major drawback
in that it requires long print time and extra usage of support mate-
rials. In order to facilitate real-world interaction, numerous studies
have explored methods to reduce print time, such as printing the
outlines[6], reducing the size of printed objects [5, 7], and incorpo-
rating additional processes [1, 8].

There are two main types of support structures [3]: linear and
branching. Linear support structures are reliable because they are
continuously layered vertically, but branching support structures
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Figure 1: (a) The overhang recovering its semicircular shape
as printing thickness increases. (b) The relationship between
the width and the required thickness.

offer the potential for further reduction in print time and filament
consumption [9]. Bridge structures also develop from smaller ones,
and increase the reliability of branching support structures [2].
However, computational cost remains a persistent challenge.

We simplified the strategy of multiplying points that can sup-
port the upper layers, which is a characteristic making branching
support structures efficient. The high calculation cost of branching
support structures is caused by their strict constraints and many
parameters such as branching angle, length of the supporting strut,
and structural stability [4]. We focused on printing without sup-
port structures. In general, overhang paths deform due to gravity-
induced sagging and pulling caused by the movement of the nozzle.
However, we confirmed that some overhangs are printable without
support structures just by repetition. In Figure 1 (a), The nozzle
moves on a semicircular path of constant radius, but the filament
comes untethered along the path, resulting in a straight, hanging
cord that sticks again at the end of the semicircle. The untethered
hanging portion is reduced at each path, finally forming a full solid
semicircle. Taking advantage of this “recovery”, we can multiply
supporting points starting with two endpoints by widening the
bridging structures [2] and repeating the printing until the shape
is recovered. We call this new type of support structure “Sacriface”.

2 DESIGN METHOD

We design Sacriface using shapes such as arcs and rectangles be-
cause deformation becomes more severe as the complexity of the
path increases. We investigated the rate of recovery of the circular
path, that is the relationship between the width and the required
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Figure 2: Sacriface supports a disk with a diameter of 50mm
situated at a height of 100mm. Print time: (Sacriface) 59m,
(Grid) 2h4m, (Snug) 1h38m, (Branching) 1h36m. The other
three support structures were automatically generated in
Prusa Slicer. Grid and Snug are two kinds of linear support
structures.

thickness shown in Figure 1 (b). Small arcs are recovered immedi-
ately and ultimately, it is possible to expand the range of supports
up to a distance equivalent to that of the endpoints. In the CAD soft-
ware, the user designs a half-cylinder under the shape that needs
to be supported. The supported part must lie atop the cylinder. The
thickness of the cylinder can be adjusted according to Figure 1 (b).

3 CHARACTERISTICS

In addition to its simplicity in design, Sacriface serves as an effi-
cient support structure. We compared the print time of Sacriface
with existing support structures. In the shape indicated in Figure 2,
Sacriface demonstrated the fastest print time. High efficiency can
be explained by its quickly expanding width. In spite of sacrifices
made during the recovery process, the enforced 90-degree angle
overhangs quickly expand support structures. Planar expansion
of Sacriface makes it possible to support multiple locations with a
single path, suggesting a potential of more efficiency, unlike indi-
vidually generalized branching structures. Furthermore, Sacriface
is space-efficient. The compact height suggests the possibility of
omitting the lower part of the linear support structures using Sacri-
face. The thickness of Sacriface does not depend on the height of
the printed object. Therefore, it contributes to reducing printing
time and filament usage, especially for objects with greater height.

4 EXAMPLES OF APPLICATIONS

Sacriface can be personally designed to enhance printing efficiency.
The simplest application is indicated in Figure 3 (a). In 3D printing,
Numerous overhangs get printable by adding a few supporting
points. When using Sacriface, the expected printing time was re-
duced compared to the automatically generated support structures
in the object in Figure 3 (a).

In addition, Sacriface can be combined with existing support
structures and applied into complex shapes keeping ease of design
owing to its simple shape and plane structure. In Figure 3 (b), an
inserted plane surface connects Sacriface with existing support
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(a). bridge

Gnd: 3h6min
Snug: 3h7min
Branching: 3h3min

Sacnface: 2h49min

(b). plane surface

Gnd: 26min
Snug: 26min
Branching: 24min

Sacnface: 21min

(c). hammock

Column spacing:  9cm

Column width-  1cm

Plane area:  29cm?

Print time for each plane:  15min

y

Figure 3: Examples of applications of Sacrifacace: (a) bridge,
(b) plane surface, (c) hammock.

structures. Despite the additional surface, Sacriface still contributes
to the efficiency of support.

Furthermore, taking advantage of planar expansion, we can uti-
lize a printable area with more flexibility. As shown in Figure 3 (c),
Sacriface expands the utilization of the vertical dimension, allowing
for the mass production of small [1, 5, 7, 8] objects at once. Using
wider surfaces reduces the number of pillars.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel support structure for 3D printing
which is simple and easily manageable by users. We emphasize
allowing for partial sagging and deformation sometimes leads to
enhancing efficiency. The unique strategy of Sacriface mitigates the
constraints in 3D printing. Further development involves evaluating
the process of deformed overhangs recovering their original shapes
and streamlining the structure.
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